
Legion Prof and Fuzzer

Elliott Slaughter
Staff Scientist, SLAC National Accelerator Laboratory

Legion Retreat
December 5, 2024

• New scalable, tiled UI frontend

• Improved performance and memory in backend

• Critical paths

• Backtraces at all wait calls

• Provenance

• Skew correction and reporting

• Correct assignment of runtime and mapper calls to tasks

• User-provided profiling information

• Separate device and host tasks for GPUs

• Fixes for multi-hop and indirect copies

• Track and report accidental usage of debug mode

• Track and report machine (mis)configuration

• Dump database for post-processing (e.g., SQLite)

• Search inside merged tasks

• Better adaptive rendering in the UI frontend

Since December 2022 Coming Up Next

Legion Prof: What’s New

COMPUTER SCIENCE 2

• Improve rendering of critical paths

• Automatic detection of performance anomalies

• Show application source alongside profile

• Optional color gradients for e.g. instances

• Bundle WASM viewer with archive for distribution

Further Out (?)

Legion Prof Architecture

COMPUTER SCIENCE 3

Legion Application

Legion

generates

prof_*.gz

Legion Prof Logs
Run Application

legion_prof
UI

Backend Frontend

native WASM

processes renders

New Since 2022

DataSource
API

• Expressed as an interface, so there can be multiple
implementations

• Dynamically rendered from profile logs

• Static archive

• Filesystem or HTTP interfaces supported

• HTTP client/server

• Abstracts the data format from the data definition

• Archive/HTTP interface is abstracted from the
methods themselves

pub trait DataSource {
 fn fetch_description(&self) -> DataSourceDescription;
 fn fetch_info(&self) -> DataSourceInfo;
 fn fetch_summary_tile(
 &self, entry_id: &EntryID, tile_id: TileID, full: bool)
 -> SummaryTile;
 fn fetch_slot_tile(
 &self, entry_id: &EntryID, tile_id: TileID, full: bool)
 -> SlotTile;
 fn fetch_slot_meta_tile(
 &self, entry_id: &EntryID, tile_id: TileID, full: bool)
 -> SlotMetaTile;
}

Unified API to Expose All Profile Data

DataSource API

COMPUTER SCIENCE 4

Storing and Sharing Tiled, Static Profiles

New Archive Format

• Key design decisions:

• Match the DataSource API so that saving and loading matches 1-1

• Tiled data format: load only data currently in view

• Choose the best representation for Rust: CBOR and Zstd compression, serialize with serde

COMPUTER SCIENCE 5

archive_dir/

info

summary_tiles/

0_10394841260

slot_tiles/

0_10394841260

slot_meta_tiles/

0_10394841260

• Based on egui (Rust UI framework)

• Immediate mode graphics toolkit

• Optimized for games which redraw
every frame

• Native and WASM backends

• GPU accelerated in both cases

• New UI implementation is:

• Asynchronous: nothing blocks the main
thread

• Scalable: tested out to 8K nodes worth of
content

• Tiled: loads only subset of data in view

High Performance Cross-Platform Visualization

New Rust UI for Native and Web

COMPUTER SCIENCE 6

Drop-in Profiling for Realm Applications

PRealm

• Today Legion Prof logs are generated by Legion

• Now supported also by PRealm

• Drop-in wrapper around the Realm API

• Instruments every task, copy, instance, etc. to generate corresponding Legion Prof logs

• Ignores Legion Prof log statements that are only useful to Legion

• Works with all the existing Legion Prof tools (backend and frontend)

COMPUTER SCIENCE 7

What Does it Take to Get to Zero Legion Bugs?

Fuzzing Legion

• Observation: Legion still has bugs

• What would it take to get to zero bugs?

• Goal: run all possible Legion programs

• Unreasonable?

COMPUTER SCIENCE 8

• Cover a core set of Legion features

• Required to exercise the core Legion algorithms
(e.g., dependence analysis)

• Tasks, privileges, fields, regions, partitions, …

• Cover them exhaustively

• Find every possible setting that can be twiddled,
and twiddle it

• Fully deterministic set of tasks/mappings

• Note: Legion execution is still non-deterministic,
even when tasks aren’t

• Fully reproducible

• As much as possible given the above

• Do not attempt to cover every possible Legion
feature

• The API is way too wide!

• But most of the core routines are shared, so we
can still exercise the important functionality

Goals Non-Goals

Fuzzer Goals and Non-Goals

COMPUTER SCIENCE 9

• Fuzzer executes traces

• A trace is a sequence of operations

• An operation is a task, copy, etc.

• Chosen via (deterministic!) random number
generation

• Initialize a region tree with a set of randomized
partitions, projection functors, etc.

• Trace selection and execution are entirely separate

• E.g., can skip the first part of a trace (but still
keep the same set of operations)

• Useful for bisecting to minimize reproducers

Execute Randomized, Deterministic Sets of Tasks

Fuzzer Design

COMPUTER SCIENCE 10

Operation 1

Region Requirement 1

Privilege: READ_WRITE

Partition:

Projection ID:

???

???

Operation 2

Region Requirement 1

Privilege: ???

Partition:

Projection ID:

???

???

Choose random

Fuzzing the Mapper

• Introduce noise by randomizing every possible mapper decision

• Like the old adversarial mapper, but more deterministic

• Goal: force Legion to execute different code paths by changing mapping decisions

• Note: not fully deterministic

• Legion does not guarantee the sequence of mapper calls, even when the program is deterministic

• But we do the best we can, given that the number and order of calls can change

COMPUTER SCIENCE 11

Verification

• Observation: Legion has sequential semantics!

• Run the program twice

• Once in tasks

• And again, but do everything directly in memory

• No parallelism, no concurrency, no Legion

• Results must match or else we have a Legion bug

• Also a good way to verify Legion Spy

COMPUTER SCIENCE 12

Random Number Generator

• Problem:

• Results must be deterministic (and portable)

• Across runs, across machines

• Depend only on explicit inputs (e.g., no initialization based on system state, time, etc.)

• Used concurrently/in parallel

• Maximize stability: avoid perturbing the RNG sequence used elsewhere in the application

• E.g., mapper’s use of RNG should not interfere with application (and vice versa)

• Solution:

• SipHash: a reduced version of SHA3 with some cryptographic properties

• Run SipHash(seed, stream, channel, seq_num)

• Tada! Output “random” bits

COMPUTER SCIENCE 13

Fuzzer Status

• Fully verified in all Legion modes

• Single-node debug and release

• Multi-node non-DCR debug and release

• Multi-node DCR debug and release

• Found over 14 bugs so far

• Underestimate since some GitHub issues reported multiple bugs

• Including multiple non-trivial core Legion algorithm bugs

• “The first actual bug in the physical analysis that's been found” – Mike

• And one case in which Legion’s behavior was underspecified

• As well as races, overzealous assertions, and Legion Spy verification bugs

• Realm bugs as well: reproduces multiple well-known, but hard to reproduce Realm crashes

COMPUTER SCIENCE 14

Test Harness

• Push-button infrastructure for running on Sapling

• Tests all the configurations on the previous page

• Configuration as code: literally one line to run
./experiment/do_all.sh sapling <branch>

• Why not CI? Because:

• Tests run longer (to achieve exhaustive coverage)

• Currently about 2-4 hours per configuration

• Debuggability (repro on hardware we have access to)

• Run real-world configs (e.g., real Infiniband network hardware)

• True multi-node

COMPUTER SCIENCE 15

Fuzzer To-Do

• Other operations: fills, copies, (I/O?)

• More dependent partitioning ops

• Incomplete partitions

• Deeper region and task trees

• Multi-dimensional index and color spaces

• Collective patterns

• Tracing (possible but current implementation makes repetition unlikely)

• Measure code coverage

COMPUTER SCIENCE 16

eslaught@slac.stanford.edu

Questions?

• Legion Prof UI: https://github.com/StanfordLegion/prof-viewer/

• Prealm: https://gitlab.com/StanfordLegion/legion/-/tree/master/tools/prealm

• Fuzzer: https://github.com/StanfordLegion/fuzzer/

COMPUTER SCIENCE 17

https://github.com/StanfordLegion/prof-viewer/
https://gitlab.com/StanfordLegion/legion/-/tree/master/tools/prealm
https://github.com/StanfordLegion/fuzzer/

