Legion Prof and Fuzzer

Elliott Slaughter
Staff Scientist, SLAC National Accelerator Laboratory

Legion Retreat
December 5, 2024

Stanford | ¢

University

Legion Prof: What’s New

Since December 2022

 New scalable, tiled Ul frontend

* Improved performance and memory in backend

* Critical paths

» Backtraces at all wait calls

* Provenance

* Skew correction and reporting

* Correct assignment of runtime and mapper calls to tasks
» User-provided profiling information

» Separate device and host tasks for GPUs

* Fixes for multi-hop and indirect copies

» Track and report accidental usage of debug mode

SLAZL COMPUTER SCIENCE

Coming Up Next

Track and report machine (mis)configuration
Dump database for post-processing (e.g., SQLite)
Search inside merged tasks

Better adaptive rendering in the Ul frontend

Further Out (?)

Improve rendering of critical paths

Automatic detection of performance anomalies
Show application source alongside profile
Optional color gradients for e.g. instances

Bundle WASM viewer with archive for distribution

Legion Prof Architecture

Run Application

Legion Application

Legion

Legion Prof Logs

generates

—

S AL COMPUTER SCIENCE

) processes

—

Backend

legion_prof

renders

—

DataSource
API

Frontend

native

WASM

New Since 2022

DataSource API

Unified APl to Expose All Profile Data

* Expressed as an interface, so there can be multiple
implementations

* Dynamically rendered from profile logs
e Static archive

* Filesystem or HTTP interfaces supported
* HTTP client/server

* Abstracts the data format from the data definition

* Archive/HTTP interface is abstracted from the
methods themselves

SLAZL COMPUTER SCIENCE

pub trait DataSource {

fn fetch_description(&self) -> DataSourceDescription;

fn fetch_info(&self) -> DataSourcelnfo;

fn fetch_summary_tile(
&self, entry_id: &EntrylD, tile_id: TilelD, full: bool)
-> SummaryTile;

fn fetch_slot_tile(
&self, entry_id: &EntrylD, tile_id: TilelD, full: bool)
-> SlotTile;

fn fetch_slot_meta_tile(
&self, entry_id: &EntrylD, tile_id: TilelD, full: bool)
-> SlotMetaTile;

New Archive Format

Storing and Sharing Tiled, Static Profiles
« Key design decisions:
* Match the DataSource API so that saving and loading matches 1-1

* Tiled data format: load only data currently in view

* Choose the best representation for Rust: CBOR and Zstd compression, serialize with serde

archive_dir/

info

summary_tiles/
010394841260

slot_tiles/
010394841260

slot_meta_tiles/
010394841260

SLAZL COMPUTER SCIENCE

New Rust Ul for Native and Web

High Performance Cross-Platform Visualization

« Based on egui (Rust Ul framework)
* Immediate mode graphics toolkit

* Optimized for games which redraw
every frame

 Native and WASM backends

* GPU accelerated in both cases

 New Ul implementation is:

* Asynchronous: nothing blocks the main
thread

e Scalable: tested out to 8K nodes worth of
content

* Tiled: loads only subset of data in view

wn

P A% COMPUTER SCIENCE

[NON)
File
Profile 0: Controls

Node Selection

O 0 First
O 0 Last
Filter by Kind

gpudev gpuhost cpu
utility system zerocopy
framebuffer chan

Expand/Collapse
Expand by kind:

gpudev gpuhost cpu
utility system zerocopy
framebuffer chan
Collapse by kind:

gpudev gpuhost cpu
utility system zerocopy
framebuffer chan

Interval
Start: 29.438s
Stop: 41.484s

Profile 0: Search

X
Search field: Title v
Match whole words only
Include collapsed processors

Enter a search to see results
displayed here.

Show Controls
* Light 9 Dark % Debug

powered by egui and eframe.

test-profiles/legion_retreat_2024/pennant.run6/logs - Legion Prof

Profile O from 29.438 to 41.484 s (duration: 12.0¢ 1=31.398 s

Al

n0

gpudev | avg

gpu host | avg

cpu avg

utility avg

system avg

zerocopy | avg

framebuffeavg

chan avg

[

T e T

1

LAk A ALt

100% Utilization

PRealm

Drop-in Profiling for Realm Applications
* Today Legion Prof logs are generated by Legion

* Now supported also by PRealm
* Drop-in wrapper around the Realm API
* Instruments every task, copy, instance, etc. to generate corresponding Legion Prof logs
* lIgnores Legion Prof log statements that are only useful to Legion

* Works with all the existing Legion Prof tools (backend and frontend)

SLAZL COMPUTER SCIENCE

Fuzzing Legion

What Does it Take to Get to Zero Legion Bugs?

* Observation: Legion still has bugs

* What would it take to get to zero bugs?

* Goal: run all possible Legion programs

* Unreasonable?

SLAZL COMPUTER SCIENCE

Fuzzer Goals and Non-Goals

Goals

« Cover a core set of Legion features

* Required to exercise the core Legion algorithms
(e.g., dependence analysis)

* Tasks, privileges, fields, regions, partitions, ...

* Cover them exhaustively
* Find every possible setting that can be twiddled,
and twiddle it
* Fully deterministic set of tasks/mappings
* Note: Legion execution is still non-deterministic,
even when tasks aren’t
* Fully reproducible

* As much as possible given the above

SLAZL COMPUTER SCIENCE

Non-Goals
* Do not attempt to cover every possible Legion
feature
* The APl is way too wide!

* But most of the core routines are shared, so we
can still exercise the important functionality

Fuzzer Design

Execute Randomized, Deterministic Sets of Tasks

» Fuzzer executes traces
* A traceis a sequence of operations
* An operation is a task, copy, etc.
* Chosen via (deterministic!) random number

generation

» Initialize a region tree with a set of randomized
partitions, projection functors, etc.
* Trace selection and execution are entirely separate

* E.g., can skip the first part of a trace (but still
keep the same set of operations)

* Useful for bisecting to minimize reproducers

S AL COMPUTER SCIENCE

Operation 1

Region Requirement 1

Privilege: READ_WRITE

Partition: Choose random
Projection ID:

Operation 2

Region Requirement 1

Privilege:

Partition: 7?7

Projection ID:

Fuzzing the Mapper

* Introduce noise by randomizing every possible mapper decision
* Like the old adversarial mapper, but more deterministic

* Goal: force Legion to execute different code paths by changing mapping decisions

* Note: not fully deterministic
* Legion does not guarantee the sequence of mapper calls, even when the program is deterministic

* But we do the best we can, given that the number and order of calls can change

SLAZL COMPUTER SCIENCE

11

Verification

« Observation: Legion has sequential semantics!

* Run the program twice
* Oncein tasks
* And again, but do everything directly in memory

* No parallelism, no concurrency, no Legion
* Results must match or else we have a Legion bug

* Also a good way to verify Legion Spy

SLAZL COMPUTER SCIENCE

12

Random Number Generator

* Problem:
* Results must be deterministic (and portable)
e Across runs, across machines
* Depend only on explicit inputs (e.g., no initialization based on system state, time, etc.)
* Used concurrently/in parallel
* Maximize stability: avoid perturbing the RNG sequence used elsewhere in the application
* E.g., mapper’s use of RNG should not interfere with application (and vice versa)
« Solution:
* SipHash: a reduced version of SHA3 with some cryptographic properties

* Run SipHash(seed, stream, channel, seq_num)
e Tada! Output “random” bits

SLAZL COMPUTER SCIENCE

13

Fuzzer Status

» Fully verified in all Legion modes

Single-node debug and release
Multi-node non-DCR debug and release
Multi-node DCR debug and release

* Found over 14 bugs so far

1 AL
P M\

Underestimate since some GitHub issues reported multiple bugs
Including multiple non-trivial core Legion algorithm bugs
* “The first actual bug in the physical analysis that's been found” - Mike
e And one case in which Legion’s behavior was underspecified
* As well as races, overzealous assertions, and Legion Spy verification bugs

Realm bugs as well: reproduces multiple well-known, but hard to reproduce Realm crashes

COMPUTER SCIENCE

14

Test Harness

* Push-button infrastructure for running on Sapling
* Tests all the configurations on the previous page

* Configuration as code: literally one line to run
.Jexperiment/do_all.sh sapling <branch>

Why not CI? Because:
* Tests run longer (to achieve exhaustive coverage)

* Currently about 2-4 hours per configuration

Debuggability (repro on hardware we have access to)

Run real-world configs (e.g., real Infiniband network hardware)

True multi-node

SLAZL COMPUTER SCIENCE

Fuzzer To-Do

« Other operations: fills, copies, (1/0?)

* More dependent partitioning ops

* |ncomplete partitions

* Deeper region and task trees

« Multi-dimensional index and color spaces

* Collective patterns

« Tracing (possible but current implementation makes repetition unlikely)

* Measure code coverage

SLAZL COMPUTER SCIENCE y

Questions?

eslaught@slac.stanford.edu

* Legion Prof Ul: https://github.com/StanfordLegion/prof-viewer/

e Prealm: https://gitlab.com/StanfordLegion/legion/-/tree/master/tools/prealm

e Fuzzer: https://github.com/StanfordLegion/fuzzer/

SLAZL COMPUTER SCIENCE

17

https://github.com/StanfordLegion/prof-viewer/
https://gitlab.com/StanfordLegion/legion/-/tree/master/tools/prealm
https://github.com/StanfordLegion/fuzzer/

