Accelerated massive data analytics for materials and semiconductors

Quynh L. Nguyen

Linac Coherent Light Source SLAC National Accelerator Laboratory 4 December 2024

Materials for devices

Understanding and manipulating matter for practical applications

Wavelength and Matter Size

Wavelength and Matter Size

Wavelength and Matter Size

Ultrafast X-ray Light Sources: HHG, Synchrotron, FEL

VUV, EUV to soft-Xray (< 300 eV) femto to attosecond ($10^{-15} - 10^{-18}$ s) $10^{6} - 10^{8}$ photons/sec

High-harmonic Generation

SLAC

Soft x-ray (0.25 - 1.6 keV) picoseconds (10^{-12} s) 10^{12} photons/sec

Synchrotron

Soft x-ray (0.25 - 1.6 keV), 1-MHz femtoseconds (10⁻¹⁵ s) 10¹⁵ photons/sec

Free-Electron Laser

World's first X-ray Free Electron Laser

SLAC X-ray Free Electron Laser

- •3-km long tunnel under I-280 and close to Stanford campus
- Access angstrom-length-scales and electronic movements
- Unravel new scientific insights in matter

Ultrafast Excitation Driver

Ultrafast characterization approaches

Electronic Structure

Spectroscopy

Atomic Landscape

Scattering

Spectral Microscopy

Spatial Imaging

Time-resolved X-ray experiment schematic timeline

Time-resolved X-ray experiment schematic timeline

3-km beam line to complex instrumentations

Undulator

Experimental Hutch

Control Room

Cryogenic Time-resolved Scattering Experimental Setup

Robot Detector

Multidimensional Tuning Parameters to Access Material Properties

Making material movies by varying parameters

- Sample geometry => Momentum range
- · X-ray/laser energy
- Time delay
- Temperature

Cryostat

Parabola

Laser

X-rav

Data Structure

Multidimensional Data Structure

Making material movies by varying parameters

• Sample geometry => Momentum range

tr-XRD: q-dependence dynamics

 $(\eta, \eta, -\delta)$ $(-\eta, \eta, -\delta)$ (η, η, δ) $(\eta, -\eta, \delta)$

Phonon dynamics

SLAC

Time delayTemperature

• X-ray/laser energy

Phonon Dispersion

Multidimensional Data Structure

QL Nguyen et al. Physical review letters 131 (7), 076901 (2023)

Multidimensional Data Structure

QL Nguyen et al. Physical review letters 131 (7), 076901 (2023)

Data analytics with cuPyNumeric

Data analytics with cuPyNumeric

\$B 1-MHz LCLS-II just turned on after 10 years in the making!

SLACE NATIONAL AGCCELERATOR BERKELEY LAB BERKELEY LAB

Challenges: Massive Data Generation from Superconducting LINAC

92x football fields

4000/day for life

Soft X-ray FEL Probe at LCLS-II

ChemRIXS / Resonant inelastic Xray scattering (qRIXS) Instruments

Soft X-ray FEL Probe at LCLS-II: roll-in end stations

Momentum Microscope Instrument

Resonant inelastic Xrav scattering (gRIXS) Instrument

SLAC

- Seshu Yamajala
- Alex Aiken
- Jana Thayer

Special thanks to:

Irina Demeshko and Manolis Papadakis at NVIDIA

