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Goal of Jax work is to enable arbitrary inter- and intra-operator 
parallelism via auto or user-guided parallelization

Operation Graph

Pure SPMD (intra-operator) schedule

Mixed intra- and inter-operator 
MPMD schedule

Jax/XLA only natively 
supports intra-operator 
(SPMD)



Goal: improve performance for large-scale training 
(256-100K GPUs) via MPMD parallelism

● Realm execution model improves perf
○ Keep device executing critical path overlapped with host-driven off-critical path tasks

● Legate programming model makes complicated patterns easier to express
○ 1F1B, load balancing irregular stages, multiple overlapping communications naturally 

described with a sequential semantic + mapper
● Make MPMD execution easy to express in Jax user-level libraries

○ Simple decorators for defining arbitrary MPMD event graphs in sequential user code



Pipeline parallelism (with exceptions) is inter-operator 
parallelism (MPMD)



Jax + Legate programming model share 
a core philosophy



Jax parallelization starts from sequential user code, 
finishes with asynchronous parallel execution

import jax.numpy as jnp

def layer(mlp, x)
  x = jnp.einsum(“bh,hm->bm”, x, mlp)

def model(params, batch):
  mlp0, mlp1 = params
  x, labels = batch
  x = layer(x)
  x = layer(x)  
  diff = x - labels
  return (diff*diff).sum()

loss = jax.jit(model)(params, batch)
  

Sequential code 
defining the model 
(no parallelism yet)

JIT compilation of 
model to GPU device 

code



Jax parallelization starts from sequential user code, 
finishes with asynchronous parallel execution

import jax.numpy as jnp
from jax import with_sharding_constraint as shard
from jax.sharding import PartitionSpec as P

def layer(mlp, x)
  mlp = shard(mlpx, P(“model”, None))
  x = jnp.einsum(“bh,hm->bm”, x, mlp)
  return shard(x, P(“batch”, “model”))

def model(params, batch):
  mlp0, mlp1 = params
  x, labels = batch
  x = layer(x)
  x = layer(x)  
  diff = x - labels
  return (diff*diff).sum()

params = init()
batch = load_batch()

loss = jax.jit(model)(params, batch)
  

Assign names to the 
tensor axes to use for 

sharding later



Jax parallelization starts from sequential user code, 
finishes with asynchronous parallel execution

import jax.numpy as jnp
from jax import with_sharding_constraint as shard
from jax.sharding import PartitionSpec as P, Mesh

def layer(mlp, x)
  mlp = shard(mlpx, P(“model”, None))
  x = jnp.einsum(“bh,hm->bm”, x, mlp)
  return shard(x, P(“batch”, “model”))

def model(params, batch):
  mlp0, mlp1 = params
  x, labels = batch
  x = layer(x)
  x = layer(x)  
  diff = x - labels
  return (diff*diff).sum()

params = init()
batch = load_batch()

devices = np.array(jax.devices()).reshape(2,2)
with Mesh(devices, (‘batch’, ‘model’)):
  loss = jax.jit(model)(params, batch)
  

Define logical to 
physical mapping of 

axis names in 
device msh

jitted function 
executes with 

sharded data in 
parallel

Define device 
mesh as 2x2



Jax and Legate/Legion share a core philosophy

● Write sequential code

● Define partitions (shardings) on tensors

● Let the compiler/runtime system automatically infer and schedule parallelism



Jax requires a uniform, global mesh for all tensors which 
prevents MPMD and pipeline parallelism

import jax.numpy as jnp
from jax import with_sharding_constraint as shard
from jax.sharding import PartitionSpec as P, Mesh

def layer(mlp, x)
  mlp = shard(mlpx, P(“model”, None))
  x = jnp.einsum(“bh,hm->bm”, x, mlp)
  return shard(x, P(“batch”, “model”))

def model(params, batch):
  mlp0, mlp1 = params
  x, labels = batch
  x = layer(x)
  x = layer(x)  
  diff = x - labels
  return (diff*diff).sum()

params = init()
batch = load_batch()

devices = np.array(jax.devices()).reshape(2,2)
with Mesh(devices, (‘batch’, ‘model’)):
  loss = jax.jit(model)(params, batch)
  

Mesh is uniform 
and global for all 

tensors!



Legate programming + execution model 
brings asynchronous MPMD parallelism to Jax



Legate-Jax can define submeshes for different operations
import jax.numpy as jnp
from legate.jax import with_sharding_constraint as shard
from legate.jax import task, parallelize
from jax.sharding import PartitionSpec as P, Mesh

def layer(mlp, x):
  mlp = shard(mlp0, P(“model”, None))
  x = jnp.einsum(‘bh,hm->bm’, x, mlp)
  return shard(x, P(“batch”, ‘model’)

def model(params, batch):
  mlp0, mlp1 = params
  x = task(layer, mesh=...)(mlp0, x)
  x = task(layer, mesh=...)(mlp1, x)
  diff = x - labels
  return (diff*diff).sum()

params = init()
batch = load_batch()

loss_fxn = parallelize(model)(params, batch)
loss = loss_fxn(params, batch)
  

Two layers can be 
dispatched to 

different 
submeshes

Use MPMD 
parallelization 

instead of jitting 
on global mesh



Legate/Legion brings flexible mappings to Jax

Use Jax + MLIR 
+ XLA to create 
Legion tasks

Legion maps pipelines 
stages to different 
submeshes, 
automagically generating 
pipeline parallelism

Profit

Phase 1 Phase 2 Phase 3



Task schedule has very irregular 
synchronization and data movement pattterns

Task schedule has regular synchroniztion and 
data movement patterns

Programming model makes irregular schedules (1F1B with load 
balancing) easy to express with sequential semantic and mapper 



Programming model expresses logical flow of application agnostic to 
communication, synchronization, and buffer allocation

struct Task {
  vector<Store> inputs;
  vector<Store> outputs;
  int stage;
  int microbatch;
  bool forward;
  DeviceList mesh;
};

// Extracted from HLO pipeline passes
vector<Task> tasks = MpmdPartition(mlir_module);

// Scheduler chooses ordering and mesh assignment 
vector<Task> ordered = ScheduleTasks(std::move(tasks));

Complexities of load-balancing entirely 
contained within logical sorting routine 
ScheduleTasks. Map data to different 
meshes and Legion will move parameters 
and keep consistent.



Where things break down…



Productivity and performance are the same thing!



Different customers may have different a different calculus 
for cost/benefit on engineering effort

Customer No. 
accelerators

Abstraction 
overhead

Accelerator 
TCO 
(hypothetical)

Optimization 
impact

Deadline

A 10K 10% $10K $ 10M 3 month delivery

B 1M 1% $10K $ 100M None, ongoing

*These numbers are totally made up and do not corresponding to any actual 
customers or products, real or perceived



Jax (training LLMs) are not typical Legion workloads and 
expose missing features and pain points

Dependency analysis and control replication overheads are problematic at 1000s 
of processes with hundreds of inputs/outputs

● Dozens of tensors can be inputs/outputs in LLM
○ Projection matrices, bias terms, MLP layers
○ Parameters, gradients, and optimizer state

● Dozens of scalar metrics (generated from NCCL all-reduce)
○ Future maps? Replicated writes?

● Inscrutable scaling bottlenecks due to thousands of small, control messages
○ Critical path analysis helpful, but still difficult to identify gaps in Legion prof



Jax (training LLMs) are not typical Legion workloads and 
expose missing features and pain points
Pipeline parallelism needs a well-defined task ordering

● The compiler has already statically derived an “optimal” schedule
● Dynamic reordering can delay the critical path and increase execution time
● Legate/Legion has no built-in mechanism for lightweight ordering of tasks



Jax (training LLMs) are not typical Legion workloads and 
expose missing features and pain points
Task completion semantics prevent task lookahead with pipelining

● It is a pipeline! No task parallelism to hide task startup latency.
● Tasks are not marked done until all data effects on the GPU are visible
● Bubble in GPU utilization from end of task to start of next GPU kernel



Jax (training LLMs) are not typical Legion workloads and 
expose missing features and pain points
● Communication-avoiding sharding (i.e. data parallelism) writes replicated output

○ Not technically valid in a sequential semantic, but Mike heroically added support
○ Partially replicated/partially sharded data patterns not easily expressed in Legate
○ If done naively, replicated scalar outputs produce huge control overhead

Fully-sharded 
(disjoint partition)

Partially replicated 
(non-disjoint partition)

Fully replicated



Jax (training LLMs) are not typical Legion workloads and 
expose missing features and pain points
Memory highly constrained, but difficult to optimize instance validation and reuse

● Large models can be 40GB of optimizer state, 30GB of activations
● Pipelined activations computed on node A read on node B are no longer needed on node A, 

but instance stays alive on node A
○ Can not use a different logical region for each logically distinct activation tensor

● Abstraction inversion alert: implemented a Legate store cache with reuse/invalidation that 
hopefully causes buffers to be allocated in desired way



A new C++ productivity layer 
built directly on Realm



Deep-learning requires only some of what Legate/Legion 
has to offer 

Requirements

● Flexibly assign tasks and sharded tensors to different submeshes
● Efficient cross-mesh resharding communication primitives
● Execution dependencies for tuning task ordering
● (Simple) fine-grained control over instance reuse and invalidation



Asynchronous cross-mesh resharding is most important library primitive

Point-to-point for disjoint 
source/dest meshes

Permute within a 
single submesh

N:M resharding (2,8) -> 
(2,2) for disjoint 
source/dest meshes



New lightweight, data-effects C++ layer  built directly on 
top of Realm with simplifications

Simplifications

● Multi-controller execution with control replication allow dependency analysis 
to be restricted to local shards only

○ Dependency analysis happens in shared memory!
● Control replication forces all processes to agree on inter-process reshard 

operations to move data between submeshes
● No separation of logical and physical arrays
● No fancy slicing/aliasing/hierarchical data tree



Realm event model made writing asynchronous 
task-based framework very easy

  DeviceList first_mesh = …;
  DeviceList second_mesh = …;
  auto waiter = on(ProcessorGroup::Local()).defer([=](Processor p) {
    Store<ShardedArray> source = ShardedArray::Create(
        GetShape(first_mesh, size), {.processor = p});
    Store<ShardedArray> dest = ShardedArray::Create(
        GetShape(second_mesh, size), {.processor = p});
    across(first_mesh).on(p).defer([](ShardedArray& array){
      int* data = array.tile().ptr<int>();
      // write some values
    }, source);
    Reshard(p, source, dest);
    across(second_mesh).on(p).defer([](const ShardedArray& array){
      const int* data = array.tile().ptr<int>();
      // read some values
    }, dest);
  }

defer(...) takes a lambda and 
arguments and performs 
dependency analysis on 

arguments

Reshard is a library function 
that inspects the sharding of 
input/output and constructs 

resharding plan using Realm 
instance copies

const-ref input automatically 
tells dependency analysis to 

use read-only privileges



 auto event = across(devices)
          .if_on(p)
          .after(precondition)
          .stream_ordered()
          .defer(
              [](Stream* s,
                 std::shared_ptr<LegateCompiler> compiler,
                 ro_vector<ShardedArray> inputs,
                 rw_vector<ShardedArray> outputs,
                 const ArrayTile &temp) {
 …
              }, std::move(devices), compiler, std::move(inputs),         
                 std::move(outputs),std::move(temp));

Declares data effects on 
the input/output tensors

Lightweight ordering 
mechanism on execution 

preconditions



Conclusions
● Legate/Legion was great for 80% solution at modest (128 GPU) scale
● 99% solution with Realm required less engineering effort than Legion
● Good or bad is entirely a matter of customer and use-case requirements





Extras



Realm execution model schedules coarse-grained work units, 
overlaps data movement/scheduling with critical path



Delays at end of task 



Problem with instances Requirements

● Flexibly assign tasks and sharded 
tensors to different submeshes

● Efficient cross-mesh resharding 
communication primitives

○ Legion doesn’t always see higher-level 
structure of required data movement

● Execution dependencies for tuning 
task ordering

○ Not exposed
● Fine-grained control over instance 

reuse and invalidation
○ Not exposed




