
The framework formerly known as Legate-Jax

Dec 4, 2024: Legion Retreat

Jeremiah Wilke | Wonchan Lee | Malte Förster

Goal of Jax work is to enable arbitrary inter- and intra-operator
parallelism via auto or user-guided parallelization

Operation Graph

Pure SPMD (intra-operator) schedule

Mixed intra- and inter-operator
MPMD schedule

Jax/XLA only natively
supports intra-operator
(SPMD)

Goal: improve performance for large-scale training
(256-100K GPUs) via MPMD parallelism

● Realm execution model improves perf
○ Keep device executing critical path overlapped with host-driven off-critical path tasks

● Legate programming model makes complicated patterns easier to express
○ 1F1B, load balancing irregular stages, multiple overlapping communications naturally

described with a sequential semantic + mapper
● Make MPMD execution easy to express in Jax user-level libraries

○ Simple decorators for defining arbitrary MPMD event graphs in sequential user code

Pipeline parallelism (with exceptions) is inter-operator
parallelism (MPMD)

Jax + Legate programming model share
a core philosophy

Jax parallelization starts from sequential user code,
finishes with asynchronous parallel execution

import jax.numpy as jnp

def layer(mlp, x)
 x = jnp.einsum(“bh,hm->bm”, x, mlp)

def model(params, batch):
 mlp0, mlp1 = params
 x, labels = batch
 x = layer(x)
 x = layer(x)
 diff = x - labels
 return (diff*diff).sum()

loss = jax.jit(model)(params, batch)

Sequential code
defining the model
(no parallelism yet)

JIT compilation of
model to GPU device

code

Jax parallelization starts from sequential user code,
finishes with asynchronous parallel execution

import jax.numpy as jnp
from jax import with_sharding_constraint as shard
from jax.sharding import PartitionSpec as P

def layer(mlp, x)
 mlp = shard(mlpx, P(“model”, None))
 x = jnp.einsum(“bh,hm->bm”, x, mlp)
 return shard(x, P(“batch”, “model”))

def model(params, batch):
 mlp0, mlp1 = params
 x, labels = batch
 x = layer(x)
 x = layer(x)
 diff = x - labels
 return (diff*diff).sum()

params = init()
batch = load_batch()

loss = jax.jit(model)(params, batch)

Assign names to the
tensor axes to use for

sharding later

Jax parallelization starts from sequential user code,
finishes with asynchronous parallel execution

import jax.numpy as jnp
from jax import with_sharding_constraint as shard
from jax.sharding import PartitionSpec as P, Mesh

def layer(mlp, x)
 mlp = shard(mlpx, P(“model”, None))
 x = jnp.einsum(“bh,hm->bm”, x, mlp)
 return shard(x, P(“batch”, “model”))

def model(params, batch):
 mlp0, mlp1 = params
 x, labels = batch
 x = layer(x)
 x = layer(x)
 diff = x - labels
 return (diff*diff).sum()

params = init()
batch = load_batch()

devices = np.array(jax.devices()).reshape(2,2)
with Mesh(devices, (‘batch’, ‘model’)):
 loss = jax.jit(model)(params, batch)

Define logical to
physical mapping of

axis names in
device msh

jitted function
executes with

sharded data in
parallel

Define device
mesh as 2x2

Jax and Legate/Legion share a core philosophy

● Write sequential code

● Define partitions (shardings) on tensors

● Let the compiler/runtime system automatically infer and schedule parallelism

Jax requires a uniform, global mesh for all tensors which
prevents MPMD and pipeline parallelism

import jax.numpy as jnp
from jax import with_sharding_constraint as shard
from jax.sharding import PartitionSpec as P, Mesh

def layer(mlp, x)
 mlp = shard(mlpx, P(“model”, None))
 x = jnp.einsum(“bh,hm->bm”, x, mlp)
 return shard(x, P(“batch”, “model”))

def model(params, batch):
 mlp0, mlp1 = params
 x, labels = batch
 x = layer(x)
 x = layer(x)
 diff = x - labels
 return (diff*diff).sum()

params = init()
batch = load_batch()

devices = np.array(jax.devices()).reshape(2,2)
with Mesh(devices, (‘batch’, ‘model’)):
 loss = jax.jit(model)(params, batch)

Mesh is uniform
and global for all

tensors!

Legate programming + execution model
brings asynchronous MPMD parallelism to Jax

Legate-Jax can define submeshes for different operations
import jax.numpy as jnp
from legate.jax import with_sharding_constraint as shard
from legate.jax import task, parallelize
from jax.sharding import PartitionSpec as P, Mesh

def layer(mlp, x):
 mlp = shard(mlp0, P(“model”, None))
 x = jnp.einsum(‘bh,hm->bm’, x, mlp)
 return shard(x, P(“batch”, ‘model’)

def model(params, batch):
 mlp0, mlp1 = params
 x = task(layer, mesh=...)(mlp0, x)
 x = task(layer, mesh=...)(mlp1, x)
 diff = x - labels
 return (diff*diff).sum()

params = init()
batch = load_batch()

loss_fxn = parallelize(model)(params, batch)
loss = loss_fxn(params, batch)

Two layers can be
dispatched to

different
submeshes

Use MPMD
parallelization

instead of jitting
on global mesh

Legate/Legion brings flexible mappings to Jax

Use Jax + MLIR
+ XLA to create
Legion tasks

Legion maps pipelines
stages to different
submeshes,
automagically generating
pipeline parallelism

Profit

Phase 1 Phase 2 Phase 3

Task schedule has very irregular
synchronization and data movement pattterns

Task schedule has regular synchroniztion and
data movement patterns

Programming model makes irregular schedules (1F1B with load
balancing) easy to express with sequential semantic and mapper

Programming model expresses logical flow of application agnostic to
communication, synchronization, and buffer allocation

struct Task {
 vector<Store> inputs;
 vector<Store> outputs;
 int stage;
 int microbatch;
 bool forward;
 DeviceList mesh;
};

// Extracted from HLO pipeline passes
vector<Task> tasks = MpmdPartition(mlir_module);

// Scheduler chooses ordering and mesh assignment
vector<Task> ordered = ScheduleTasks(std::move(tasks));

Complexities of load-balancing entirely
contained within logical sorting routine
ScheduleTasks. Map data to different
meshes and Legion will move parameters
and keep consistent.

Where things break down…

Productivity and performance are the same thing!

Different customers may have different a different calculus
for cost/benefit on engineering effort

Customer No.
accelerators

Abstraction
overhead

Accelerator
TCO
(hypothetical)

Optimization
impact

Deadline

A 10K 10% $10K $ 10M 3 month delivery

B 1M 1% $10K $ 100M None, ongoing

*These numbers are totally made up and do not corresponding to any actual
customers or products, real or perceived

Jax (training LLMs) are not typical Legion workloads and
expose missing features and pain points

Dependency analysis and control replication overheads are problematic at 1000s
of processes with hundreds of inputs/outputs

● Dozens of tensors can be inputs/outputs in LLM
○ Projection matrices, bias terms, MLP layers
○ Parameters, gradients, and optimizer state

● Dozens of scalar metrics (generated from NCCL all-reduce)
○ Future maps? Replicated writes?

● Inscrutable scaling bottlenecks due to thousands of small, control messages
○ Critical path analysis helpful, but still difficult to identify gaps in Legion prof

Jax (training LLMs) are not typical Legion workloads and
expose missing features and pain points
Pipeline parallelism needs a well-defined task ordering

● The compiler has already statically derived an “optimal” schedule
● Dynamic reordering can delay the critical path and increase execution time
● Legate/Legion has no built-in mechanism for lightweight ordering of tasks

Jax (training LLMs) are not typical Legion workloads and
expose missing features and pain points
Task completion semantics prevent task lookahead with pipelining

● It is a pipeline! No task parallelism to hide task startup latency.
● Tasks are not marked done until all data effects on the GPU are visible
● Bubble in GPU utilization from end of task to start of next GPU kernel

Jax (training LLMs) are not typical Legion workloads and
expose missing features and pain points
● Communication-avoiding sharding (i.e. data parallelism) writes replicated output

○ Not technically valid in a sequential semantic, but Mike heroically added support
○ Partially replicated/partially sharded data patterns not easily expressed in Legate
○ If done naively, replicated scalar outputs produce huge control overhead

Fully-sharded
(disjoint partition)

Partially replicated
(non-disjoint partition)

Fully replicated

Jax (training LLMs) are not typical Legion workloads and
expose missing features and pain points
Memory highly constrained, but difficult to optimize instance validation and reuse

● Large models can be 40GB of optimizer state, 30GB of activations
● Pipelined activations computed on node A read on node B are no longer needed on node A,

but instance stays alive on node A
○ Can not use a different logical region for each logically distinct activation tensor

● Abstraction inversion alert: implemented a Legate store cache with reuse/invalidation that
hopefully causes buffers to be allocated in desired way

A new C++ productivity layer
built directly on Realm

Deep-learning requires only some of what Legate/Legion
has to offer

Requirements

● Flexibly assign tasks and sharded tensors to different submeshes
● Efficient cross-mesh resharding communication primitives
● Execution dependencies for tuning task ordering
● (Simple) fine-grained control over instance reuse and invalidation

Asynchronous cross-mesh resharding is most important library primitive

Point-to-point for disjoint
source/dest meshes

Permute within a
single submesh

N:M resharding (2,8) ->
(2,2) for disjoint
source/dest meshes

New lightweight, data-effects C++ layer built directly on
top of Realm with simplifications

Simplifications

● Multi-controller execution with control replication allow dependency analysis
to be restricted to local shards only

○ Dependency analysis happens in shared memory!
● Control replication forces all processes to agree on inter-process reshard

operations to move data between submeshes
● No separation of logical and physical arrays
● No fancy slicing/aliasing/hierarchical data tree

Realm event model made writing asynchronous
task-based framework very easy

 DeviceList first_mesh = …;
 DeviceList second_mesh = …;
 auto waiter = on(ProcessorGroup::Local()).defer([=](Processor p) {
 Store<ShardedArray> source = ShardedArray::Create(
 GetShape(first_mesh, size), {.processor = p});
 Store<ShardedArray> dest = ShardedArray::Create(
 GetShape(second_mesh, size), {.processor = p});
 across(first_mesh).on(p).defer([](ShardedArray& array){
 int* data = array.tile().ptr<int>();
 // write some values
 }, source);
 Reshard(p, source, dest);
 across(second_mesh).on(p).defer([](const ShardedArray& array){
 const int* data = array.tile().ptr<int>();
 // read some values
 }, dest);
 }

defer(...) takes a lambda and
arguments and performs
dependency analysis on

arguments

Reshard is a library function
that inspects the sharding of
input/output and constructs

resharding plan using Realm
instance copies

const-ref input automatically
tells dependency analysis to

use read-only privileges

 auto event = across(devices)
 .if_on(p)
 .after(precondition)
 .stream_ordered()
 .defer(
 [](Stream* s,
 std::shared_ptr<LegateCompiler> compiler,
 ro_vector<ShardedArray> inputs,
 rw_vector<ShardedArray> outputs,
 const ArrayTile &temp) {
 …
 }, std::move(devices), compiler, std::move(inputs),
 std::move(outputs),std::move(temp));

Declares data effects on
the input/output tensors

Lightweight ordering
mechanism on execution

preconditions

Conclusions
● Legate/Legion was great for 80% solution at modest (128 GPU) scale
● 99% solution with Realm required less engineering effort than Legion
● Good or bad is entirely a matter of customer and use-case requirements

Extras

Realm execution model schedules coarse-grained work units,
overlaps data movement/scheduling with critical path

Delays at end of task

Problem with instances Requirements

● Flexibly assign tasks and sharded
tensors to different submeshes

● Efficient cross-mesh resharding
communication primitives

○ Legion doesn’t always see higher-level
structure of required data movement

● Execution dependencies for tuning
task ordering

○ Not exposed
● Fine-grained control over instance

reuse and invalidation
○ Not exposed

