
1

Legate & cuPyNumeric
Wonchan Lee | Legion Retreat 2024 | Dec 4, 2024

2

Scaling with Zero Code Change
Author in familiar APIs, scale to any machines

Human productivity is the biggest bottleneck for
parallel/distributed programming

• Prototypes written in “easy” programming languages/APIs (e.g.,
Python, MATLAB, etc.) are often re-implemented using “more
serious” frameworks for scaling

. . .

Generate a random positive semi-definite matrix

A = scipy.sparse.random(n, n, format=“csr”)

A = 0.5 * (A + A.T) + n * scipy.sparse.eye(n)

Estimate the maximum eigenvalue of A

x = numpy.random.rand(A.shape[0])

for _ in range(iters):

 x = A @ x

 x /= numpy.linalg.norm(x)

result = numpy.dot(x.T, A @ x)

Single GPU Single-Node

Multi-GPU

Multi-Node Multi-GPU
Cloud & Supercomputer

Mixed

CPU/GPU

“Zero code change” scaling for better productivity

• Author programs in familiar APIs, scale them to any machines

• Easy transition from prototyping to production

3

Introducing Legate
Programming framework for scalable and composable software

Provides uniform solutions to common scaling problems

• Data partitioning and coherence management

• Compute partitioning and distribution

• Scalable execution on distributed memory machines

• Composability/interoperability between libraries

. . .

cuPyNumeric
Legate

Dataframe

Legate

RAFT

Legate

IO

Legate

Boost

Legate

Sparse

Single GPU Single-Node

Multi-GPU

Multi-Node Multi-GPU
Cloud & Supercomputer

Mixed

CPU/GPU

Legate Framework

Built on years of research on Legion and Realm

• Scalable task-based implicit parallelism

• First-class data partitions with coherence management

• Constraint-based partitioning facilitating library-local reasoning for
data partitions

Legate Core - Productivity & Composability Layer

Legion - Implicit Parallelism Layer

Realm - Runtime for Scalable and Portable Execution

4

How Legate Works
Implicit parallelism via “scale-free” tasking

1. Legate program makes
API calls

Li
b

ra
ry

 c
a

ll
s

in
 p

ro
g

ra
m

 o
rd

e
r legate_io.hdf5_read

cunumeric.add

legate_dataframe.join

cunumeric.dot

legate_boost.fit

E

E

A

C

D

CB

A

4. Legion analyzes data
dependencies and constructs a

Realm task graph

A

B

C

D

E

2. Legate libraries issue
“scale-free” tasks

Legion

Legate Framework

R
e

a
lm

A

A

B

C

C

D

E

E

3. Legate core converts each
scale-free task to parallel tasks

Legate Core

5. Realm executes the task
graph on a machine in a

scalable manner
Legate libraries are free of any explicit
parallelization or synchronization/data
movement, making them composable and
transparently scalable by construction

5

Legate Programming Model
Index launch1 + constraint-based auto-partitioning2 = scale-free tasking

import legate.core as lg

Example: Multi-GPU Batched FFTs

Specify how data is used by the task via type annotations

1. Rupanshu Soi, Michael Bauer, Sean Treichler, Manolis Papadakis, Wonchan Lee, Patrick S. McCormick, Alex Aiken, Elliott Slaughter, Index launches: scalable, flexible representation of parallel task groups. SC 2021

2. Wonchan Lee, Manolis Papadakis, Elliott Slaughter, Alex Aiken, A constraint-based approach to automatic data partitioning for distributed memory execution. SC 2019

Declare a task, a unit of computation applied

to a subset of data

def batched_fft(

 output: lg.OutputArray, input: lg.InputArray,

):

@lg.task(

)

Specify desirable data partitions using

partitioning constraints

variants=(“gpu”,)

 constraints=(

 lg.align(”input", ”output"),

 lg.broadcast(”input", (0,)),

),

Task bodies can reuse the existing single-GPU libraries

cu_input = cupy.asarray(input)

 cu_output = cupy.asarray(output)

 cu_output[:] = cupy.fft.fftn(cu_input, axes=(0,))

Tasks are invoked like Python functions, and the runtime

automatically parallelizes them by partitioning inputs and

outputs

batched_fft(

 lg.create_array(shape=(M,N), dtype=lg.complex64),

 cupynumeric.random.rand(M,N).astype(np.complex64),

)

6

cuFFT/cuSolver/cuSolverMP integration (~70% API coverage)
Legate IO & Legate Dataframe

Finished a complete rewrite to C++

Machine flags are optional now
Python is preferred to the Legate launcher
Conda packages are shipped with network support

cuPyNumeric announcement @ SC'24

User-provided hints for instance bloating

Revisiting the Plan From 2022
Updates since the last retreat

7

Rewriting Legate Core in C++

A complete rewrite of the core framework in C++

• Allows Legate libraries to be written in languages other than
Python (most importantly C++)

• Libraries written in different languages can talk to each other

• Greatly reduces the framework overhead

• Is still a drop-in replacement of the old Python implementation

cuPyNumeric
Legate

Sparse

Legion

Legate Core C++

Python binding

Legate

RAFT

namespace stl = legate::experimental::stl;

// Create a 2-D Legate store and initialize it
auto store = stl::create_store<int64_t>({4, 5});
stl::fill(store1, 1.);

// Operate on a row of data at a time, accessible via mdspan
struct MungeRow {
 template <class Elem, class Ext, class Map, class Acc>
 void operator()(std::mdspan<Elem, Ext, Map, Acc> row);
};
stl::for_each(MungeRow{}, stl::rows_of(store));

// Transform the store with a pre-defined operator and
// reduce the result with a custom operator, in a single call
auto result =
stl::transform_reduce(store,
 stl::scalar{std::int64_t{0}},
 std::plus{},
 [](auto x) const { return x * x; });

Has enabled a new opportunity: Legate STL

• STL-like template library of high-level, reusable, generic algorithms

• Scales functional C++ programs to MNMG systems via the Legate
runtime

• Easy for users to extend Legate-based applications with custom
algorithms

Legate

STL

Legate

Dataframe

Legate

Boost

8

Python Task Support

Eliminate the boilerplate code for task launch

• Function call = task launch

• Task launch boilerplate is synthesized from the type signature and
decorator

import legate.core as lg

@lg.task(

 variants=(“gpu”,)

 constraints=(

 lg.align(”input", ”output"),

 lg.broadcast(”input", (0,)),

),

)

def batched_fft(

 output: lg.OutputArray, input: lg.InputArray,

):

 cu_input = cupy.asarray(input)

 cu_output = cupy.asarray(output)

 cu_output[:] = cupy.fft.fftn(cu_input, axes=(0,))

batched_fft(

 lg.create_array(shape=(M,N), dtype=lg.complex64),

 cupynumeric.random.rand(M,N).astype(np.complex64),

)

Enable pure Python-based library development with Legate

• Tasks can be defined as decorated Python functions

• Legate data containers implement common array protocols, allowing
task bodies to reuse existing single processor Python libraries (e.g.,
NumPy, CuPy, or Numba)

9

Legate RAPIDS: End-to-end Acceleration for Data Analytics

Target benchmark: RAPIDS GPU-XB-AI (derived from TPCx-AI)

Data

Loading
ETL ML Training ML Serving

Workload ETL

Legate Dataframe + cuPyNumeric

ML

Legate RAFT + Legate

Boost

UC01 Hash join, hash aggregate, null

handling, element-wise ops

K-means

UC04 Drop duplicates, cast to string,

functions to support TF-IDF

Naive Bayes, TF-IDF

UC10 Hash join, datetime

support, element-wise arithmetic

Logistic Regression

Cost CPU nodes GPU nodes

SF30 $ 44,248 $ 270,000 /

nodeSF300 $ 309,091

Legate versions are ~10X more cost effective than the CPU counterparts

Preliminary comparison* with official TPCx-AI results

𝑆𝑐𝑜𝑟𝑒 =
𝑆𝐹 ⋅ (#	𝑢𝑠𝑒	𝑐𝑎𝑠𝑒𝑠)

𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑃𝑒𝑟𝑓!"#$%$%& , 𝑃𝑒𝑟𝑓'(")$%&)

* Disclaimer: the Legate numbers aren’t official TPCx-AI results and do not abide by the official rules of TPCx-AI

Legate

Collection of optimized GPU

kernels for ETL & ML

Runtime system for HPC-grade

scalability for Python libraries

Legate is1.4-2.5X

faster than Dask

10

Legate Boost: Gradient Boosting on Legate
Composability for the win!

• Gradient boosting library built on Legate

• Composability boosts development productivity

• Majority of the library components are written in cuPyNumeric

• Only several core kernels are written as custom Legate tasks that
are seamlessly composed with cuPyNumeric components

• Library users can implement custom objective functions in
cuPyNumeric

“Existing software packages such as XGBoost [3] or LightGBM [5] require tens of

thousands of lines of carefully tuned C++ code to achieve high levels of parallel

performance and implement state of the art features. Legate Boost's

implementation within the legate parallel programming framework is dramatically

simpler, more extensible and more maintainable, yet providing comparable

performance compared to existing libraries.”

Quotes from Rory Mitchell, the author of Legate Boost (emphasis mine):

Competitive performance compared to the SOTA

11

cuNumeric
Legate

Sparse

Add Add

Analysis Window

Identify tasks to be fused

Regardless of library that submitted themTask fusion

Fusion Across Library Boundaries*

Cross-library optimization enabled by common foundation

SpMV(M, v+w+t)

Tasks submitted to

Legate runtime

Add SpMV

MLIR

Kernel fusion

FUSED
Legate

Runtime

Conjugate Gradient Throughput on DGX-A100 cluster Removes

• Task launch overhead (1 launch instead of N)

• Extra temporary allocations

• Sync/data movement between kernels

* Rohan Yadav, Shiv Sundram, Wonchan Lee, Michael Garland, Michael Bauer, Alex Aiken, Fredrik Kjolstad, Composing Distributed Computations Through Task and Kernel Fusion. ASPLOS 2025 (to appear)

12

Legate and CUDA Activities, All in the Same Profile
Nsight systems integration for Legate applications

• Performance debugging often requires a cross-cutting investigation across multiple abstraction layers

• For Legate applications, we need both Legate-level (logical) views and CUDA-level (physical) views to get the complete picture

• Nsight systems supports rendering of profiling data from both sides, providing a holistic view to the execution trace

Physical view

GPU (kernels), CPU,

OS, network

Logical view

Legate tasks, Legate

stores, runtime

activities

Semantic information from Legate

applications are used to match kernels

with originating tasks

13

Join Us!

• Try Legate and cuPyNumeric today:

• For any questions or comments, please contact the Legate team on legate@nvidia.com or the discussion page on GitHub

• Resources

• Legate – Get Started

• NVIDIA Legate Core official documentation

• Legate presentation at GTC’24

• Effortlessly Scale NumPy from Laptops to Supercomputers with NVIDIA cuPyNumeric

conda install -c conda-forge -c legate cupynumeric

mailto:legate@nvidia.com
https://github.com/nv-legate/discussion
https://developer.nvidia.com/legate-get-started
https://docs.nvidia.com/legate/latest/
https://www.nvidia.com/gtc/session-catalog/?regcode=no-ncid&ncid=no-ncid
https://developer.nvidia.com/blog/effortlessly-scale-numpy-from-laptops-to-supercomputers-with-nvidia-cupynumeric

14

