
Regent and Pygion

Elliott Slaughter
Staff Scientist, SLAC National Accelerator Laboratory 

Legion Retreat
December 4, 2024



• C++, Fortran, Regent, Pygion

• Expose a concept of tasks, regions, partitions

• User is responsible for selecting task (data) 
granularity

• Features correspond 1-1 with Legion programming 
model

• Good for users who need complete control

• Legate, FlexFlow, FleCSI

• Expose domain-specific concepts

• User is not (usually) responsible for selecting task 
(data) granularity

• Features are higher level, sometimes with an optional 
fallback to explicit task-based programming

• Good for users who need ease of use (and may 
require additional effort to regain control when 
needed)

Direct Interfaces Indirect Interfaces

Programming Legion

COMPUTER SCIENCE 2



• The venerable Legion C++ API, used 
directly from C++ applications

• Template-based metaprogramming

• Statically type checked, but limited (or 
no) checking of Legion features

• Code is verbose *

• Code has to be written “just right” to 
execute efficiently in Legion *

• Write GPU code manually in CUDA, 
HIP, Kokkos, etc.

• Immediate access to bleeding edge 
Legion features

• Language written to target the Legion 
programming model

• Powerful metaprogramming via Lua

• Statically type checked (includes full 
checking of Legion features)

• Code is compact

• Automatically optimizes Legion API 
calls to improve execution efficiency 
without user intervention

• Automatically generate GPU code for 
tasks

• Programming interface for Legion in 
Python

• No metaprogramming (but dynamic)

• Dynamically type checked (includes 
full checking of Legion features)

• Code is compact

• API optimization partially automated, 
requires some knowledge of “good” 
code patterns, but ergonomic to write

• Call Python libraries for GPU (CuPy, 
PyTorch, etc.)

COMPUTER SCIENCE 3

Direct Legion Interfaces
C++ API Regent Pygion

* BYOA: Bring Your Own Abstraction
    Legion is generally intended to be used with user-provided abstractions



Code Sample: A Task Launch

COMPUTER SCIENCE 4

IndexSpace colors =
    runtime->create_index_space(ctx, 
Rect<1>(0, 1));
float a = 1.23;
IndexLauncher launch(
    TID_SAXPY, colors,
    TaskArgument((void *)&a, sizeof(a)),
    ArgumentMap());
launch.add_region_requirement(RegionRequi
rement(
    P, 0, READ_WRITE, EXCLUSIVE, S));
launch.add_region_requirement(RegionRequi
rement(
    P, 0, READ_ONLY, EXCLUSIVE, S));
launch.add_field(0, FID_Y);
launch.add_field(1, FID_X);
runtime->execute_index_space(ctx, launch);

C++ API

for i = 0, 2 do
    saxpy(P[i], 1.23)
end

Regent

for i in IndexLaunch([2]):
    saxpy(P[i], 1.23)

Pygion



Code Sample: A GPU Task

COMPUTER SCIENCE 5

__global__
void gpu_saxpy(const float a,
                            Rect<1> rect,
                            FieldAccessor<READ_ONLY, float, 1> 
acc_x,
                            FieldAccessor<READ_WRITE, float, 1> 
acc_y)
{
    int p = bounds.lo + (blockIdx.x * blockDim.x) + 
threadIdx.x;
    if (p <= bounds.hi)
        acc_y[p] += a * acc_x[p];
}

__host__
void saxpy(const Task *task,
                   const std::vector<PhysicalRegion> &regions,
                   Context ctx, Runtime *runtime) {
    FieldAccessor<READ_WRITE,float,1> acc_y(
      regions[0], FID_Y);
    FieldAccessor<READ_WRITE,float,1> acc_x(
      regions[1], FID_X);
    float a = *(const float*)(task->args);

    Rect<1> rect =
        runtime->get_index_space_domain(
            ctx, task->regions[0].region.get_index_space());
    size_t num_elements = rect.volume();

   size_t cta_threads = 256;
    size_t total_ctas = (num_elements + (cta_threads-
1))/cta_threads;
    gpu_saxpy<<<total_ctas, cta_threads>>>(a, rect, acc_x, 
acc_y);
}

C++ API (and CUDA)

__demand(__cuda)
task saxpy(S : region(fields), a : float)
where reads writes(S.y), reads(S.x) 
do
    for i in S do
        S[i].y += a * S[i].x
    end
end

Regent

@task(privileges=[RW('y') + R('x')])
def saxpy(S, a):
    x = cupy.asarray(S.x)
    y = cupy.asarray(S.y)
    y += a * x
    S.y[:] = cupy.asnumpy(y)

Pygion



Regent Stack

COMPUTER SCIENCE 6

Regent
Language and 

compiler

Legion
High-level runtime

Realm
Low-level runtime

Terra
Sequential 

performance

Lua
Host language

LLVM
Code generation



• LLVM 18 (and 17, 16, 15)

• SPIR-V backend (for Intel GPUs)

• RAII

• Allocators

• Smart pointers

• Concepts

• Ranges

• Linear algebra wrappers

• Test framework

• Package manager

A Lot of New Activity In Terra

Terra: What’s New

COMPUTER SCIENCE 7

Work in progress by:
Rene Hiemstra, PhD (TU/e)
Torsten Kessler, PhD (TU/e)



• Common programming style popularized by C++

• Implemented via metamethods in Terra

• __init

• __dtor

• __copy

• Can be methods or macros

• Note: no rvalue references, so this is equivalent to 
C++03 or Rust

var a : A

a = b

var a : A = b

Resource Allocation Is Initialization

RAII In Terra

COMPUTER SCIENCE 8

var a : A
a:__init()

A.methods.__copy(b, a)

var a : A
a:__init()
A.methods.__copy(b, a)

Becomes



• Nested predication

• (More) Pygion interop

• Automatic future map elision in index launches

• HIP multi-GPU per rank

• ROCm 6.0

• Complex in std/format

• Compiler determinism fixes

• SCR removal: long live DCR

• FFT library: see talk later today

• Intel GPU support

• We’ve made some progress, but still a ways out

Since December 2022 Coming Up Next

Regent: What’s New

COMPUTER SCIENCE 9

• More flexible assignment of regions/partitions

• Gather/scatter copies

• Compact sparse instances

• Talk to me! These get prioritized based on user needs

Further Out (?)



Now Supports More Code Patterns

Predication Update

if c1 then
    some_task(…)
end

Becomes:

some_task(…, predicate=c1)

if c1 then
    x = other_task(…)
end

Becomes:

x = other_task(…, predicate=c1, else_value=x)

COMPUTER SCIENCE 10

if c1 then
    if c2 then
        some_task(…)
    end
end

Becomes:

c1and2 = c1 and c2

some_task(…, predicate=c1and2)



ROCm 6.0 Support

• Requires LLVM 18

• Previous LLVM versions generate incompatible code and cannot work with ROCm 6.0

• Can’t use AMD’s LLVM fork either: it’s (even more) badly broken

• Plan is to track vanilla LLVM in the future (this is why keeping up to date matters!)

COMPUTER SCIENCE 11

Regent

Terra

Vanilla LLVM 18

AMD 
GPU .o

Vanilla clang-
offload-bundler

Vanilla lld .so

Use vanilla LLVM components at each stage of the pipeline
(except AMD’s bitcode libraries)

AMD 
bitcode



• Regent-based code for direct numerical simulation of 
turbulent combustion chemistry from Sandia

• Combination of auto-generated and DSL-based 
kernels for NVIDIA and AMD GPUs

• Scaled up to 8192 nodes on Frontier

• 2048 nodes shown at right

Progress in Scaling S3D in 2024

S3D Scaling on Frontier

COMPUTER SCIENCE 12
Weak Scaling on Frontier

Ammonia, 2×1283 grid points/nodeHeat Release from 
Ammonia Combustion



Since December 2022

Pygion: What’s New

• Improved interop with Regent

• … That’s it? 😆

• Pygion is stable, supports major use cases, and has been used in production

• We have a website! https://legion.stanford.edu/pygion

COMPUTER SCIENCE 13

https://legion.stanford.edu/pygion/


• Kitchen sink software design

• If it exists, and it works, use it

• NumPy, CuPy, Numba, hand-written 
CUDA, third-party CUDA libraries

• Pygion tasking as the orchestration layer

Design Principles

SpiniFEL: Single Particle Imaging for XFEL

14

Input: X-ray diffraction images

Output: 3D reconstruction of 
each protein conformation

Lessons Learned

Weak scaling on up to 4096 GPUs on Frontier

• Tasking layer was a non-issue

• No production issues due to 
Pygion

• Kitchen sink approach caused 
porting issues

[Mirchandaney et al., 
WAMTA 2024]



eslaught@slac.stanford.edu

Questions?

COMPUTER SCIENCE 15


