
Pygion: Flexible, Scalable Task-Based Parallelism
with Python

Elliott Slaughter
SLAC National Accelerator Laboratory

eslaught@slac.stanford.edu

Alex Aiken
Stanford University

aiken@cs.stanford.edu

Abstract—Dynamic languages provide the flexibility needed to
implement expressive support for task-based parallel program-
ming constructs. We present Pygion, a Python interface for
the Legion task-based programming system, and show that it
can provide features comparable to Regent, a statically typed
programming language with dedicated support for the Legion
programming model. Furthermore, we show that the dynamic
nature of Python permits the implementation of several key
optimizations (index launches, futures, mapping) currently imple-
mented in the Regent compiler. Together these features enable
Pygion code that is comparable in expressiveness but more
flexible than Regent, and substantially more concise, less error
prone, and easier to use than C++ Legion code. Pygion is designed
to interoperate with Regent and can use Regent to generate high-
performance CPU and GPU kernel implementations. We show
that, in combination with high-performance kernels written in
Regent, Pygion is able to achieve efficient, scalable execution on
up to 512 nodes of the heterogeneous supercomputer Piz Daint.

Index Terms—task-based parallelism, Pygion, Legion, Python

I. INTRODUCTION

A growing class of users in the physical sciences and
data analytics are unfamiliar with traditional high-performance
programming models and languages, yet need access to high-
performance computational resources. This issue is of particular
relevance to science user facilities such as the Linac Coherent
Light Source (LCLS) [1], which regularly host users with
no formal training in computer programming and who need
to process and analyze increasingly large volumes of data
produced by scientific experiments [2]. In many cases, analyses
must be written, debugged and executed on the fly as the exper-
iment is in progress. These users typically program in Python,
but still need a path to achieve productive, high-performance
programming on current and future supercomputers.

Task-based programming models provide a promising path
forward. Such models, which include Legion [3], PaRSEC [4]
and StarPU [5], simplify the programming of heterogeneous
supercomputers by providing sequential semantics. Tasks (or
functions marked for parallel execution) are enumerated in
program order. The arguments to tasks, and the privileges
requested on those arguments (read, write, etc.) are passed
through a dynamic analysis to compute a dependence graph
between tasks that guides the parallel and distributed execution
of the program. Every execution, even when parallel and/or
distributed, is guaranteed to be consistent with the original
sequential ordering of tasks, ruling out by construction a large
class of potential parallel and distributed programming bugs

(data races, deadlocks, etc.) that can occur in programs written
in traditional programming models.

Task-based programs are conceptually simpler than ones
written in traditional programming models, but for two reasons
they can sometimes be longer than one might expect, especially
when written in C++. First, task-based programs reify the data
flows in a program, as any data to be used by a task must
be explicitly identified in the task’s arguments, along with a
corresponding privilege. This reification is an essential feature
that drives the other advantages of task-based systems. Second,
certain low-level features of task-based runtime systems, which
are necessary for performance, are exposed in the runtime
APIs for these systems making programming at this level
more complicated than necessary. These issues are challenging
to address in a C or C++ API as these languages lack type
system features necessary to capture the relevant programming
system invariants [6], which in turn results in a C/C++ interface
which is verbose, error-prone, and low-level compared to the
conceptual model of task-based systems (see Section III).

Programming languages with dedicated support for task-
based programming constructs can address this mismatch. For
example, Regent [7] is a high-level programming language
that supports the Legion programming model. The Regent type
system enforces many of the low-level invariants required for
writing correct Legion programs, and the compiler provides a
number of critical optimizations that improve performance and
scalability [8]. However the cost of enforcing these invariants
in the Regent type system is that the compiler must necessarily
be conservative, making it difficult or impossible to express
certain code patterns in an application.

In this paper, we explore an alternative approach based on
the dynamic programming language Python. A key observation
is that many program analysis problems that are difficult
or intractable to solve at compile time can be solved in a
straightforward manner using dynamic analysis. Type system
invariants enforced at compile time by the Regent compiler
can be checked at runtime in Python. Many (though not all)
of the important optimizations provided by Regent can also
be provided in Python via dynamic program analysis. We
have implemented five of the seven optimizations in [7], and
one has been rendered irrelevant by unrelated improvements
in Legion, leaving only one optimization that could not be
implemented (requiring manual user annotation of certain tasks).
This approach leads to task-based programming constructs that

are more flexible (due to the dynamic nature of the checks),
while maintaining similar levels of expressiveness and brevity
in application codes.

There are tradeoffs involved in this approach, particularly
resulting from the use of dynamic analysis to perform program
optimization. Though certain problems can be addressed
through careful API design, the abstractions are necessarily
leaky to a certain extent. These leaks are not normally visible in
idiomatic Python code, but can become visible, for example, if
the user explicitly checks the types of certain values generated
by the API (see Section IV).

Though Python code is certainly slower than that produced
by Regent’s highly-optimized LLVM [9] backend, this does
not necessarily impact overall application performance. In
particular, the control code in a task-based program (i.e., the
part that launches tasks) can run asynchronously from the rest of
the code, and thus only needs to achieve an average throughput
(in tasks per second) that is higher than the rate at which the
system can execute those tasks. If the tasks themselves are
highly-optimized (perhaps because they are written in another
programming language or call an external library), then the
overall application performance can still be high.

We present Pygion, an implementation of Python support
for Legion, and evaluate its performance against three well-
tuned Regent applications on up to 512 nodes of the Piz Daint
supercomputer [10]. By reusing the existing, high-performance
Regent kernels, these implementations are able to achieve high-
performance execution on Piz Daint’s GPUs. For two out of the
three applications we consider, we show that Pygion achieves
performance parity (within 2% in absolute performance of
Regent) at all node counts, while a third achieves within 16%.

This paper makes the following contributions:
• Section II presents a set of high-level Pygion APIs for

Legion and discusses how they compare with Regent and
C++ Legion.

• Section III describes a strategy for lowering the high-
level Pygion APIs to the Legion runtime and the dynamic
analysis needed to track the necessary programming model
invariants.

• Section IV discusses key optimizations provided by the
Regent compiler and their corresponding implementations
in Pygion. This section also discusses an optimization
that cannot currently be implemented in Pygion due
to intractability of the necessary dynamic analysis, and
potential strategies for implementing them in the future.

• Section V evaluates the performance and scalability of
Pygion against reference implementations in Regent on
up to 512 nodes of the Piz Daint supercomputer.

Section VI discusses related work, and Section VII con-
cludes.

II. PYGION PROGRAMMING INTERFACE

In this section we describe the design of Pygion, a high-
level, Python-based interface for Legion. For the purposes
of this and the following sections, Legion refers to a runtime
system implemented as a C++ API that provides all the services

(launching tasks, moving data, profiling, etc.) of the Legion
programming model. Regent is a high-level, statically typed
language that compiles down to the Legion API. The Regent
compiler statically checks that programs observe the critical
invariants of Legion, and also simplifies programming by
automating and optimizing some aspects of the programming
model. Finally as noted above, Pygion, the subject of this
paper, is a Python interface to the Legion API that, as we will
see, provides most of the functionality of Regent running in a
standard Python interpreter.

Writing a parallel program in Legion consists of two
interrelated objectives: the user must divide the program
execution into tasks (to be executed in parallel) and the program
data into regions (to be distributed across the machine).

Tasks are simply functions, marked by the user as being
eligible for parallel execution. The body of a task executes
sequentially, but concurrently with other tasks. Tasks can expose
nested parallelism to the Legion runtime by invoking subtasks.
Subtasks run asynchronously, but always in a manner consistent
with a sequential execution of the program.

To identify the parallelism in a Legion program, the runtime
performs a dynamic analysis over the sequence of tasks to
compute a dependence graph. A dependency exists between
two tasks if they would interfere: i.e., when the two tasks
access overlapping data, and at least one task has requested
write privilege on the data. Note that privileges in Legion are
strict. A task cannot access data unless it has been passed the
data as an argument with the appropriate privilege.

Application data in Legion is stored in regions. Regions
can be thought of as being similar to Pandas dataframes [11],
but natively support multi-dimensional indexing. They contain
fields, each of which stores a value for each point in an index
space. In Pygion each field is exposed as a separate NumPy [12]
array.

Listing 1 shows a simple SAXPY example program with two
tasks. Tasks in Pygion are declared via the @task decorator
(lines 1, 5). Privileges are specified via the privileges

keyword as a list with one entry per argument. In this case, the
task reads and writes the field y and reads the field x of the
first argument s (line 1). The actual computation is performed
on line 3 using NumPy array operations.

Execution starts at the task main (lines 5-10). main defines
a region with 10 elements and two fields x and y (line 7),
partitions it into two pieces (line 8), and the calls the saxpy

task on each piece (lines 9-10).
Data parallelism is achieved in Legion by partitioning regions

into subregions. Subregions are views onto the memory of the
original parent regions. Partitions in Legion are very expressive
and may subdivide regions into arbitrary subsets of elements,
including overlapping, or aliased, subsets. Legion provides a
number of partitioning operators that help users define partitions
concisely [13]. For example, the equal operator divides a
region into roughly equal subregions (line 8).

The Legion programming model permits multiple partitions
of the same region (e.g., to express different access patterns)
as well as replication of data across the memory hierarchy. It

1 @task(privileges=[RW(’y’) + R(’x’)])
2 def saxpy(S, a):
3 S.y += a * S.x
4

5 @task
6 def main():
7 S = Region([10], {’x’: float32, ’y’: float32})
8 P = Partition.equal(S, [2])
9 for i in IndexLaunch([2]):

10 saxpy(P[i], 1.23)

Listing 1. SAXPY example in Python.

1 struct fields {
2 x : float,
3 y : float,
4 }
5

6 task saxpy(S : region(fields), a : float)
7 where reads writes(S.y), reads(S.x) do
8 for i in S do
9 S[i].y += a * S[i].x

10 end
11 end
12

13 task main()
14 var S = region(ispace(ptr, 10), fields)
15 var P = partition(equal, S, 2)
16 for i = 0, 2 do
17 saxpy(P[i], 1.23)
18 end
19 end

Listing 2. SAXPY example in Regent.

does so by allowing multiple instances of regions or subregions
(physical copies of a region’s data in memory) and manages
the coherence of the data in these instances based on which
partition a task uses to access the region. Note that regions are
allocated lazily, so that for example the region S at line 7 need
not be allocated immediately in any particular node’s memory.
(In fact, for S, this means the region need never be allocated at
all in its entirety, since it is only accessed via its subregions.)
These mechanisms are largely invisible to the application, as
the exact mapping from regions to instances is managed by
Pygion (see Sections III-B and IV-C).

For comparison with the Pygion code in Listing 1, Listings 2
and 3 show the same example code written in Regent and C++
Legion, respectively. The Regent code in Listing 2 is mostly
comparable to Pygion, and differences in line counts are mostly
due to differences in syntax and formatting. The C++ code in
Listing 3 on the other hand is not only substantially longer,
but also exposes more low-level details of the Legion runtime
system. Users of Legion in C++ must explicitly manage the
IDs associated with fields (lines 1-4) and tasks (lines 6-9),
must manually manage the creation of index sets (lines 32-33)
and fields (lines 35-40) associated with regions, must manually
set up (and as necessary serialize) the arguments to tasks (lines
53-64), must manually register tasks (not shown), and so on.

More fundamentally, the mapping between regions and
instances must be manually managed in C++. Tasks that wish
to obtain access to the memory associated with an instance
must manually construct an accessor to do so (lines 14-17).
Accessors are automatically managed by Pygion and Regent
as described in Section III-B.

1 enum FIELD_IDS {
2 FID_X,
3 FID_Y,
4 };
5

6 enum TASK_IDS {
7 TID_SAXPY,
8 TID_MAIN,
9 };

10

11 void saxpy(const Task *task,
12 const std::vector<PhysicalRegion> ®ions,
13 Context ctx, Runtime *runtime) {
14 FieldAccessor<READ_WRITE,float,1> acc_y(
15 regions[0], FID_Y);
16 FieldAccessor<READ_WRITE,float,1> acc_x(
17 regions[1], FID_X);
18 float a = *(const float*)(task->args);
19

20 Rect<1> rect =
21 runtime->get_index_space_domain(
22 ctx, task->regions[0].region.get_index_space());
23

24 for (PointInRectIterator<1> i(rect); i(); i++) {
25 acc_y[*i] += + a * acc_x[*i];
26 }
27 }
28

29 void main(const Task *task,
30 const std::vector<PhysicalRegion> ®ions,
31 Context ctx, Runtime *runtime) {
32 IndexSpace I =
33 runtime->create_index_space(ctx, Rect<1>(0, 9));
34

35 FieldSpace F =
36 runtime->create_field_space(ctx);
37 FieldAllocator allocator =
38 runtime->create_field_allocator(ctx, F);
39 allocator.allocate_field(sizeof(float), FID_X);
40 allocator.allocate_field(sizeof(float), FID_Y);
41

42 LogicalRegion S =
43 runtime->create_logical_region(ctx, I, F);
44

45 IndexSpace colors =
46 runtime->create_index_space(ctx, Rect<1>(0, 1));
47

48 IndexPartition IP =
49 runtime->create_equal_partition(ctx, I, colors);
50 LogicalPartition P =
51 runtime->get_logical_partition(ctx, S, IP);
52

53 float a = 1.23;
54 IndexLauncher launch(
55 TID_SAXPY, colors,
56 TaskArgument((void *)&a, sizeof(a)),
57 ArgumentMap());
58 launch.add_region_requirement(RegionRequirement(
59 P, 0, READ_WRITE, EXCLUSIVE, S));
60 launch.add_region_requirement(RegionRequirement(
61 P, 0, READ_ONLY, EXCLUSIVE, S));
62 launch.add_field(0, FID_Y);
63 launch.add_field(1, FID_X);
64 runtime->execute_index_space(ctx, launch);
65 }

Listing 3. SAXPY example in C++.

Finally, for efficient execution by the Legion runtime, certain
optimizations must be applied to the code. One of these
optimizations, index launch optimization, is used to improve the
scalability of launching tasks across many nodes by providing
a concise representation of a set of tasks to be executed. This
optimization has been manually applied to the C++ code (lines

53-64), but is automatically (or nearly automatically) applied in
Pygion and Regent. This and other optimizations are discussed
in more detail in Section IV.

Although for this particular example the Pygion and Regent
code samples look quite similar, Pygion has some advantages
over Regent, particularly in terms of flexibility. Regions and
partitions are first-class values: both can be stored in data
structures, passed to and returned from tasks, etc. Privileges
are not first-class: they follow a strict stack discipline where
a task can access only regions it has created itself, or ones
passed as arguments (and where privileges have been declared
on those arguments). To make sure that region accesses are
safe (i.e., consistent with the declared privileges) and that all
calls to the Legion API are well-formed, Pygion and Regent
must track the subregion relationships between regions and
the privileges that apply to them. In Regent, these checks
must necessarily be performed statically (and must therefore
be conservative). When the Regent type system cannot verify
that an access is safe it must reject it at compile time, which
makes it challenging or impossible to construct certain forms
of data structures. By using a dynamic analysis Pygion is
able to provide more flexibility while preserving the same
degree of safety; the tradeoff, of course, is that errors are
reported at runtime instead of at compile time. The tracking
of relationships between regions and privileges is discussed in
Section III.

III. LOWERING PYGION TO LEGION

Pygion, like Regent, provides a higher-level interface than
what is supported by the Legion runtime itself. This interface
must be lowered to the Legion runtime to execute the program.
This section describes the steps taken to lower Pygion APIs to
Legion and the salient details of the implementation.

A. Tracking Regions and Privileges

As described in Section II, the subregion relationships
between regions, and privileges that apply to those regions,
must be tracked to ensure that region accesses are safe and
that Legion API calls are well-formed.

This tracking is relatively straightforward within the body
of a task: Pygion maintains a list of privileges for each region
as well as a region tree (i.e., a tree formed by the parent-child
relationships between regions and subregions). On an attempt
to access the contents of a subregion, it is necessary to check
that a superset of the required privileges are available, either
for the subregion itself or for some ancestor in the region tree.
Similarly, for a call to a subtask to be well-formed, it must
identify from which ancestor region it derives privileges, which
can also be determined from the region tree and privileges
for each region. (An example can be seen in Listing 3 on
lines 59 and 61 where S is provided as the 5th argument to
signify that it is the ancestor which holds privileges.) These
dynamic checks are simple but sufficient to capture the precise
relationships between regions. In contrast, Regent must perform
a type-based alias analysis which can lose precision, leading
to reduced flexibility.

When passing subregions to a subtask, the list of privileges
associated with each region is cleared (inside of the subtask)
and replaced with the privileges associated with the subtask
itself. The region tree is serialized and passed with the
arguments so that the relationships between regions can be
identified. (The Python pickle module is used for serialization,
which preserves object identity within a set of objects if they
are serialized at the same time.) For efficiency and to avoid
passing unneeded context, the region tree is truncated at the
least common ancestor among all the subregions of a given
region for which the subtask has requested privileges.

Regions can be passed to subtasks inside of data structures
as long as any that require privileges are also named explicitly
as separate arguments. For efficiency, Pygion does not attempt
to recursively scan data structures for regions, but relies on
pickle to preserve object identity among a set of serialized
objects to ensure that the regions match up correctly. This is
a capability for which limited support is available in Regent,
due to the need to track regions at the type system level.

If a subtask creates a new region, it can return that region to
the caller, and the caller will inherit the privileges along with
the region. Pygion correctly tracks the ownership of created
regions, including when returned out of a subtask. Pygion
also correctly tracks the region tree if a subregion is returned
(or a data structure that contains a region and zero or more
subregions of that region).

B. Accessors

Region instances can be organized according to any of a
wide variety of data layouts: C or Fortran array order, struct-
of-arrays or array-of-structs, or complex hybrid layouts (e.g.,
optimized for vectorization or tiling). To ensure that access to
instances is efficient, Legion exposes instances as a separate
type from regions (PhysicalRegion in C++, see line 12
of Listing 3) and requires the user to use a templated class
FieldAccessor to access them (lines 14-17).

Pygion manages this transparently on behalf of the user.
Fields of a region are exposed as NumPy arrays (via asarray

to avoid copying), and the mapping of regions to instances is
managed automatically. NumPy natively provides support for a
variety of data layouts, avoiding the need for specialized code
that is visible to the user.

C. Calling Convention

Legion provides the building blocks for users to construct
calls to subtasks however they choose, but the exact details of
the calling convention are left up to the user. For example, in
Listing 3 line 56, the pass-by-value argument a is serialized
simply by packing it into a buffer. Objects with special
significance to the runtime are passed separately: regions (lines
58-63), futures (described in Section IV-B), etc. are passed to
subtasks by different sets of runtime calls.

Pygion supports two calling conventions: the Regent calling
convention [14], and one native to Pygion. In the Regent
calling convention, arguments are packed into a struct along
with a bitmask which specifies which of the arguments (if

any) are being passed via futures. Additional arrays are
passed containing the field IDs of any regions contained in
the arguments. Legion runtime objects such as regions are
represented by handles that are safe to pass between nodes,
but otherwise only plain-old-data types are supported.

The Pygion native calling convention is substantially more
flexible. Arguments are serialized via pickle. In practice,
pickle is a universal standard in Python, so nearly any kind
of data structure can be encoded. pickle maintains object
identity within a set of serialized objects so that large data
structures are passed correctly. Certain runtime objects (such
as regions) are preprocessed prior to serialization (e.g., to
clear the list of existing privileges and to minimize the extent
of the region tree which must be serialized). For large data
structures passed repeatedly, serialization time can be amortized
by storing the data structure in a future and passing this future
to each task.

As noted in [14], the grouping of fields into region re-
quirements impacts the performance of the dynamic analysis
employed by the Legion runtime. For this purpose Pygion
uses the same grouping algorithm as Regent to ensure optimal
packing of fields into region requirements.

D. Automatic Memory Management

Python provides automatic memory management via refer-
ence counting, combined with a garbage collector designed
to detect and break cycles of garbage values. This memory
management strategy becomes somewhat more complicated
in the presence of tasks and distributed execution: a value
passed in as an argument to a subtask cannot be freed inside
of the subtask even if the subtask no longer has need of it,
because the parent task might still be using it. Similarly a
value returned from a subtask is serialized and then (from
the subtask’s perspective) appears to go out of scope, even
though the value itself is actually returned to caller. In both of
these cases, the reference counting scheme in Python cannot
be solely relied upon, because the parent and child tasks may
execute on different nodes of a distributed-memory cluster, and
thus the references will necessarily be broken whenever the
values are serialized.

To mitigate this issue and preserve automatic memory
management (i.e., not require manual deletion of Legion
runtime objects), Pygion augments Python’s reference counting
with a notion of ownership, along with an escape analysis
which determines when a value escapes a task.

A task that allocates a value is considered to own it, and if
the value does not escape, it is deallocated via Python’s normal
reference counting scheme. All Legion objects are tracked by
weak references, and at the end of a task, any weak references
that are still valid are considered to escape. This situation can
occur in one of two ways: either (a) the object is (possibly
transitively) referenced from the task’s return value, or (b)
the object is in a cycle which has not yet been collected by
the garbage collector. We consider the object to have escaped
in both cases; while it would be possible to run the Python
garbage collector to catch all cyclic garbage at the end of a task,

this would impose too high a performance penalty. Thanks to
Python’s reference counting implementation, only cycles of
garbage are at risk of escaping this way; otherwise collection is
entirely deterministic. In our experience, referring to a Legion
object from a reference cycle is not common as Legion objects
do not have any user-controlled outgoing references.

Values that escape have the ownership bit set on serialization,
so that the caller task takes ownership of the value (once it is
deserialized). In contrast, values serialized in all other cases
(such as in the arguments to a subtask call) do not have the
ownership bit set (so that for example subtasks do not attempt to
deallocate values owned by a parent task). Legion automatically
considers any non-deallocated value to have escaped at the end
of a task, so this is a good match for Legion’s semantics, and
it is substantially more flexible than Regent, which must do
any escape analysis statically at compile time.

Note that Legion tracks objects such as regions and futures
passed to subtasks, so it is not necessary to track these
references in Pygion. If the parent task completes without
allowing these values to escape, Pygion will instruct Legion to
deallocate them, but the deallocation will be deferred by the
runtime until the corresponding subtasks have completed.

IV. OPTIMIZATIONS

One potential concern in developing a Python interface for
task-based programming is that a naive lowering of high-level
constructs to the lower-level runtime interface is known to
be far from optimal [7]. We show that most of Regent’s
optimizations for task-based programs can be provided in
Python using dynamic analysis, in combination with careful
API design. Out of seven optimizations presented in [7], five can
be performed automatically or nearly automatically, one cannot
be performed, and one has been rendered irrelevant by unrelated
improvements in the underlying runtime infrastructure. An
additional optimization reported in [8] has been replaced with a
dynamic counterpart described in [15]. In this section we briefly
describe the optimizations, their design and implementation in
Pygion, and for the one optimization that cannot be performed,
suggest a way in which it might potentially be implemented
in the future.

A. Index Launches

Index launches are a construct that enable the runtime
analysis for a set of N tasks to be performed in O(1)
time instead of O(N) by leveraging a concise, O(1)-space
description of the tasks to be executed. (Note that O(1)-time
execution additionally requires the use of control replication
(Section IV-D); otherwise launches are executed with an
O(logN) broadcast tree.) Therefore this is an optimization
that is critical to the scalable execution of dynamic task-based
code.

An index launch as understood by the Legion runtime
consists of a launch domain, a task (to be instantiated once
for each point in the domain), and arguments (pass-by-value,
regions, futures, etc.). An example of a C++ index launch
can be seen in Listing 3 lines 53-64. Region arguments to

1 @task
2 def main():
3 S = Region([10], {’x’: float32, ’y’: float32})
4 P = Partition.equal(S, [2])
5 index_launch([2], saxpy, P[ID], 1.23)

Listing 4. SAXPY example with constant time launches.

the launch are specified as a projection, or function from a
point i in the launch domain to the particular subregion that
is the argument to the ith task in the launch. In general this
can take the form λi.P [f(i)] where f is any function and P
is a partition, but by far the most common projection is the
identity λi.P [i]. In lines 59 and 61 the argument 0 specifies
the identity projection on the partition argument P.

The challenge in developing an index launch optimization for
Python is how to capture the projections of region arguments
for the launch. We achieve this through a combination of careful
API design along with symbolic execution of region expressions.
In Pygion, IndexLaunch is a special iterator which records
the series of task calls issued while the iterator is active (see
Listing 1 line 9). The loop variable i is a symbolic value,
which can be coerced to a concrete value, but also can be used
with region expressions such as P[i] to generate a projection
expression (line 10). These expressions are understood by
the index launch implementation and generate the appropriate
Legion calls in the backend.

Because Pygion performs this optimization dynamically,
there are limitations to the impact that it has. In particular,
while the optimization successfully reduces runtime analysis
cost to O(1), the loop must still execute O(N) times (and
O(N) storage is required) because the task arguments are not
generally known to be loop invariant or projections. To reduce
both the time and space complexity of packing arguments to
O(1), Pygion provides a second form of index launch, called
constant time launch.

This form of index launch can be seen in line 5 of Listing 4.
In the sample, P[ID] is a symbolic expression representing
the projection λi.P [i] (i.e., ID is the implicit loop variable).
Arguments are encoded only once, and projections such
as P[ID] are resolved in a post-processing pass over the
arguments. Because the post-processing pass occurs in parallel
(within the spawned tasks themselves), it costs O(N/M) where
M is the number of processors used to execute the launch, and
in practice is effectively constant time.

B. Futures

Subtasks run asynchronously with respect to the caller.
To avoid prematurely blocking on the result of a subtask,
which would serialize execution, task calls return futures
which represent the yet-to-be-computed results. In Legion C++,
futures are exposed to the user, and must be manually passed
through a separate set of runtime APIs to be passed to other
subtasks. In Pygion this is mostly transparent, and futures
passed to tasks are automatically added via the appropriate
runtime APIs (and deserialized appropriately in argument post-
processing).

1 @task
2 def main():
3 S = Region([10], {’x’: float32, ’y’: float32})
4 T = Region([10], {’x’: float32, ’y’: float32})
5 saxpy(S, 1.23)
6 saxpy(T, 4.56)
7 print(S.x)
8 print(T.x)

Listing 5. Example with suboptimal mapping under conservative Legion
runtime assumptions which is optimized by Pygion.

Although the differences between futures and concrete values
can mostly be hidden in idiomatic Pygion code that uses
duck typing [16], programs that explicitly check the types
of task return values will be able to observe that the values
are futures. This is a necessary tradeoff due to the lack of a
fully static analysis and optimization capability in Pygion. In
contrast, Regent programs cannot observe whether the future
optimization is enabled or disabled, as the Regent compiler
prevents any differences from being visible by the user.

C. Mapping

Region data can be stored in one or more instances as
described in Section II. Though Legion automatically manages
the coherence of instances, the conservative assumptions made
by the runtime by default can result in suboptimal performance
when an application performs a series of repeated task calls.

Regions are automatically mapped to instances at the start
of a task, and must be unmapped to avoid data races with
subtasks that have conflicting privileges on the same data. For
example, consider a parent and child task that both have read-
write access to a region: sequential semantics requires that
the parent must unmap the region before the call and then
subsequently map the region again after the call (blocking
in the map operation to synchronize on the completion of
the subtask), otherwise data races would be possible due to
concurrent, read-write access to the same data by both the
parent and child tasks. By default Legion assumes such races
are possible and automatically inserts the required map and
unmap calls to force the parent to wait for the completion of
the child task; but this is suboptimal in the common case where
a task repeatedly launches subtasks without any intervening
accesses to the data.

Listing 5 shows an example which is suboptimal under the
Legion runtime’s conservative assumptions. By default, Legion
inserts map and unmap calls around each task call, causing
the main task to block on both lines 5 and 6, even though
these tasks are otherwise non-interfering and the main task
does not actually attempt to access the data until lines 7-8.
Thus without further optimization, this program actually does
not achieve parallel execution at all. In C++ the user must
manually insert map and unmap calls to avoid this behavior.
For example, if the example in Listing 5 were written in C++,
the user might choose to unmap both S and T before line 5
and map both after line 6. Regent and Pygion automatically
perform this optimization to avoid premature blocking.

Pygion automatically optimizes mapping by tracking the
liveness of the NumPy arrays that wrap the fields of instances

(again, thanks to Python’s deterministic reference counting
implementation and with the same caveats regarding cyclic
garbage). Mapping and unmapping is performed lazily, at the
point where a subtask is launched (if the last data access was
local) or where a local data access is made (if the last operation
was a subtask). This strategy provides improved precision in
the case of conditionals, compared to Regent’s flow-sensitive
analysis which must consider all possible execution paths.

D. Optimizations Performed Externally

The following optimizations provided by Regent are also
available in Pygion, but are provided directly by the Legion
runtime or another dependency.

Because the fields of regions in Pygion are exposed as
NumPy arrays, pointer check elision and vectorization are
performed by NumPy. In most cases, users who write idiomatic
Legion code use bulk NumPy operations, which are generally
amenable to amortizing any necessary checks such as pointer
checks. (Pointers are really offsets into arrays in Legion, so
pointer checks are subsumed into NumPy’s existing bounds
checks.) Similarly, NumPy provides vectorized implementations
of these bulk operations, making a separate vectorization
pass unnecessary. For cases where NumPy implementations
might benefit from other optimizations such as loop fusion
and/or tiling, Numba [17] can be used to generate these high-
performance implementations. Or Regent itself can be called
from Pygion, enabling automatic generation of efficient CPU
and GPU implementations.

Control replication [8] is an optimization that substantially
improves the scalability of a Legion program by converting
the repeated fork-join style parallelism of index launches into
efficient, SPMD-style code.

In normal execution, the main task is executed on one node.
This node can become a scalability bottleneck as the subtasks
of the main task must be launched from the same node the main
task is running on (though they may execute on other nodes).
Under control replicated execution, the main task is instead
executed on all nodes simultaneously in SPMD fashion. The
Legion runtime filters the set of tasks executed by each node
so that each task is only executed once. The Legion runtime
also automatically inserts data movement and synchronization
to preserve the original sequential semantics of the program. In
this way the SPMD nature of the execution is not visible to the
user as long as the main task is deterministic. Therefore control
replication avoids a sequential bottleneck because the analysis
and execution of tasks is distributed across the machine.

Control replication was first implemented in the Regent
compiler but is now directly implemented in the Legion
runtime [15]. In the following experiments we use exclusively
the Legion implementation of this optimization.

E. Optimizations No Longer Necessary

The dynamic branch elision optimization in Regent, which
improves the performance of certain access patterns where
data might be located in any of a set of regions, is no longer
necessary in recent versions of the Legion runtime. The runtime

now provides support for co-location constraints on tasks which
require Legion to place the constrained regions into a single
instance together, eliminating the need for any dynamic checks.

F. Optimizations Not Performed

An important optimization in the Legion runtime is the
ability to designate tasks as leaf or inner. Leaf tasks access
data locally but do not launch subtasks. Inner tasks launch
subtasks but do not directly access data. Knowing that a task
is inner means no instances need to be mapped for a task (and
therefore the task can begin to execute even before the data is
ready); knowing that a task is leaf means that several important
runtime tests become cheaper because the task cannot launch
subtasks.

Regent analyzes the body of each task to automatically
determine these designations, but Pygion’s use of interpreted
Python makes it challenging to apply static analysis to the
bodies of tasks (and dynamic analysis is insufficient to
determine these designations, as the best one could do would
be to abort the program if the designation were violated).

As a workaround, users can manually annotate tasks in
Pygion as leaf and/or inner by way of optional keyword
arguments to the @task decorator (not shown in the code
samples). The cost of adding this annotation to tasks is low,
but it does require users to be familiar with the definitions of
leaf and inner to make the correct annotations. (Though note
that if the user makes a mistake, an error will be reported at
runtime and will not be permitted to corrupt the runtime state
of the program.)

A potential future approach to implementing this optimiza-
tion could rely on speculation support in the Legion runtime.
Similar to optimistic concurrency schemes, Legion provides
the ability to speculate on what properties a task might have (in
this case leaf and/or inner), and to roll back the execution in the
case that the speculated property does not hold. This capability
comes at a cost (in particular, additional copies of data must be
made in memory or on disk to ensure rollback is possible in the
event of a missed speculation), but it seems likely that in long-
running iterative applications, the speculation would be likely
to converge quickly, reducing the cost of these mechanisms.
Our experience indicates that tasks do not dynamically switch
between leaf and inner, so this approach is likely to work well.

V. EVALUATION

We present an evaluation of Pygion on up to 512 nodes of
the Piz Daint supercomputer [10]. Piz Daint is a Cray XC50
machine with one Intel Xeon E5-2690 v3 (12 physical cores)
and one NVIDIA Tesla P100 per node. We use the system
default installations of GCC 6.2.0 and CUDA 9.1.85. Legion
uses GASNet-EX 2019.3.0 as its communication layer [18].
Regent uses LLVM 3.8.1 for code generation [9]. Pygion uses
Python 3.7.3, NumPy 1.16.4, and CFFI 1.12.3.

We consider three already-optimized Regent applications,
and versions of each application where the main task has
been ported to Pygion. The applications include: Stencil, a
9-point, star-shaped stencil on a grid [19]; Circuit, an electrical

1 2 4 8 16 32 64 128 256 512
Nodes

0

2

4

6

8

10

12
Th

ro
ug

hp
ut

 p
er

 N
od

e
(

 p
oi

nt
s/

s)

Regent
Pygion
Pygion CTL

Fig. 1. Stencil weak scaling, 9× 108 points/node.

1 2 4 8 16 32 64 128 256 512
Nodes

0

1

2

3

4

5

Th
ro

ug
hp

ut
 p

er
 N

od
e

(
 w

ire
s/

s)

Regent
Pygion
Pygion CTL

Fig. 2. Circuit weak scaling, 2× 105 wires/node.

circuit simulation on an unstructured graph [8]; and Pennant,
a Lagrangian hydrodynamics simulation on a 2D unstructured
mesh [20]. In order to maintain as much of an apples-to-
apples comparison as possible, we reuse the original Regent
implementations of the tasks in each application (aside from
the main task); this allows us to make use of Regent’s high-
performance CUDA code generator to target the GPUs on Piz
Daint.

To demonstrate the scalability of Pygion, we conduct weak
scaling experiments on Piz Daint up to 512 nodes. The results
are presented in Figures 1, 2 and 3. For each application,
we consider three versions: Regent (the baseline), Pygion,
and Pygion with constant time launches (CTL). Each data
point in the graphs is the average of 5 runs. We use the
following problem sizes: 9×108 points/node for Stencil, 2×105
wires/node for Circuit, and 7.4× 106 zones/node for Pennant.
The applications have been configured to run 50, 50, and 30
time steps, respectively.

Thanks to the use of the existing high-performance kernels,
Pygion achieves performance parity at small node counts for

1 2 4 8 16 32 64 128 256 512
Nodes

0

20

40

60

80

100

Th
ro

ug
hp

ut
 p

er
 N

od
e

(
 zo

ne
s/

s)

Regent
Pygion
Pygion CTL

Fig. 3. Pennant weak scaling, 7.4× 106 zones/node.

all codes (within 1% in absolute performance). This is not
surprising, as the main task executes asynchronously from
the rest of the application, and therefore does not impact
performance as long as the average throughput (in tasks per
second launched by the main task) exceeds the rate at which
the machine can execute them.

Pygion CTL achieves weak scaling parallel efficiency of 96%,
94% and 75% respectively for Stencil, Circuit, and Pennant
(vs. 98%, 94% and 90% for Regent) at 512 nodes. Without
CTL, the scalability of Pygion is limited, as the O(N) time
complexity of the packing of index launch arguments grows
to dominate execution time at large node counts. This effect is
most visible in Figure 3, as Pennant has the largest number of
tasks per iteration of the time-step loop (and those tasks are of
relatively small granularity), as well as a global reduction to
compute dt for the next time step (which prevents the Legion
runtime from analyzing tasks more than one iteration ahead of
the actual execution of the program).

Although the asymptotic factors are important, constant
factors also matter. Notably, Regent does not use constant time
launches, and so also incurs O(N) time complexity in the
packing of arguments, but with a constant factor that is so
much smaller that it is not an issue up to 512 nodes. The
reduction in asymptotic complexity is much more important
for Pygion because the constant factors on packing arguments
are so much higher.

For two of the three application (Stencil and Circuit), Py-
gion’s scalable execution with CTL ensures that the applications
achieve performance parity across all node counts (within 2%
in absolute performance). Pennant begins to drop at 128 nodes,
and achieves within 16% of Regent’s performance at 512 nodes.
At the time of writing, we are currently investigating the cause
of the Pennant performance degradation.

VI. RELATED WORK

Among the existing task-based programming systems for
high-performance computing, by far the most common lan-
guages used for programming are C and C++. Legion [3],

PaRSEC (with dynamic task discovery) [4], and StarPU [5]
support distributed-memory, while OpenMP (as of version 4.0)
[21], OmpSs [22] and Kokkos [23] run on shared-memory
systems. These systems share a number of common features:
tasks appear to execute in program order, dependencies between
tasks are determined by the arguments supplied to task calls
along with the privileges requested by tasks, and tasks can be
offloaded to available GPUs (with data movement managed
by the system). Among these systems, Legion is the only one
that provides support for partitioning [13]; the others require
users to explicitly reorganize data in applications that use
multiple access patterns. However, in general the use of C/C++
represents a significant barrier for scientists not already familiar
with traditional HPC programming models and languages.

PyCOMPSs [24] and Dask [25] provide support for task-
based programming in Python. Like Pygion, the use of Python
in these systems improves usability for scientists not already
familiar with lower-level programming languages such as
C/C++. However, these systems lack features of Legion, such as
control replication, without which performance and scalability
can be limited [15]. As with most of the systems above,
PyCOMPSs and Dask also lack support for partitioning.

An alternative approach explored in PaRSEC (with param-
eterized task graphs) [26] is to provide a domain-specific
language (DSL) which can generate task graphs automatically.
In this approach a DSL compiler reads a program representation
(in the case of PaRSEC, a recursive, algebraic description of a
task graph) and generates code to execute the tasks described
in the program. These approaches can improve usability within
a domain, as long as the target programs are well supported
by the domain-specific semantics.

On the other hand, some languages focus on more general-
purpose support for task-based programming. This is the
case for Regent [7], a language which directly targets the
Legion programming model. Regent provides a model which
is higher-level than the Legion C++ interface, and the Regent
compiler translates programs into efficient code for the Legion
runtime. The Regent type system is also richer than C++, and
directly tracks various program properties to ensure correct
usage of the model [6]. However these type restrictions also
limit the flexibility of the Regent language and make certain
programming patterns difficult.

The Sequoia language [27] for array-based programs offers
a form of task-based parallelism where tasks are automatically,
recursively decomposed for optimized execution on deep
memory hierarchies. Various optimizations in the Sequoia
compiler ensure very high performance [28]. However, the
compiler requires intimate knowledge of the program, including
the sizes of all input arrays and the exact configuration of the
target machine, to be available at compile time in order to
apply these optimizations. This approach makes it impractical
to apply to more dynamic problems.

Domain-specific programming frameworks such as Uin-
tah [29] provide support for constructing directed acyclic graphs
(DAGs) of tasks that can be executed asynchronously. Such
models can provide improved programmability by applying

domain-specific assumptions, and therefore are not applicable
outside of the chosen domain.

In contrast to the implicitly parallel systems above, certain
task-based runtimes provide explicitly parallel program seman-
tics. In OCR [30] and Realm [31], the DAG of tasks is explicitly
specified by the user, instead of being inferred via a static or
dynamic analysis of the arguments to tasks. These systems are
typically intended to be used by library and framework authors
rather than directly by end-users, as the code to construct DAGs
of tasks can be verbose and error-prone.

Others systems aim to directly improve the usability of
explicit parallelism. These include partitioned global address
space (PGAS) languages Chapel [32], Fortran coarrays [33],
Titanium [34], UPC [35], and X10 [36]. Although the details
vary, the common elements include the ability to hold references
to (and possibly directly access) the contents of memory on
remote machines and in many cases the ability to launch tasks
to execute locally or remotely. Alternatively, actor models such
as Charm++ [37] ensure that no such remote reference are held,
and instead data movement and synchronization occurs via
message passing between objects. However, as these systems
are explicitly parallel they typically do not prevent all of the
possible pitfalls that can occur with parallel programming.

At the other extreme, Legate [15] and Dask [25] provide sup-
port for running unmodified or minimally-edited NumPy [12]
programs on distributed machines. Though NumPy itself
is entirely sequential, these approaches work because most
NumPy operations work in bulk, over an entire array, and
can often be executed lazily (and therefore asynchronously).
Internally, Legate is based on Legion, whereas Dask builds
on its own task-based programming model. These approaches
are appealing because they minimize the amount of work
required to understand the programming model, but they rely
on heuristics that may not provide optimal performance for
any given problem. In cases where the heuristics fail, the user
may be forced to turn to other programming models that more
directly support the parallelism required.

VII. CONCLUSION

A growing population of users in the physical sciences and
data analysis require supercomputers to process the ever larger
data sets in these disciplines, but are unfamiliar with traditional
high-performance programming models and languages. To meet
the needs of these users, we have presented Pygion, a Python-
based interface for the Legion task-based programming system.
By leveraging the flexibility and the dynamic nature of the
Python programming language, we have been able to implement
an interface with expressiveness which is comparable to Regent,
a dedicated language for the Legion programming model. For
five out of seven optimizations presented in [7], we have
shown that dynamic program analysis in Pygion is sufficient to
support automatic or nearly automatic optimization in Pygion,
one optimization is no longer necessary, and only one necessary
optimization is intractable under this approach and requires
manual user annotation of tasks.

With constant time launches, Pygion is able to achieve weak
scalability that is comparable to already-optimized Regent
GPU implementations on up to 512 nodes of the Piz Daint
supercomputer. By reusing the original task implementations
from the Regent code (except for the main task), Pygion is
able to target Piz Daint’s GPUs with minimal additional effort
and with high performance.

Overall, these results point in a promising direction: contrary
to what one might expect, Python is fast enough to be useful for
writing the main tasks in non-trivial mini-apps relevant to high-
performance scientific simulation. The additional flexibility
afforded by the use of dynamic program analysis, and the
streamlined interface, have the potential to make this a much
more productive interface for writing task-based programs on
modern heterogeneous supercomputers, especially for a large
class of scientific users who are not familiar with traditional
programming models and languages.

ACKNOWLEDGMENT

This material is based upon work supported by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National
Nuclear Security Administration, and by a grant from the
Swiss National Supercomputing Centre (CSCS) under project
ID d80.

REFERENCES

[1] “Linac coherent light source,” https://lcls.slac.stanford.edu/, 2009.
[2] “Slac, berkeley lab researchers prepare for scientific computing

on the exascale,” https://www6.slac.stanford.edu/news/
2016-11-03-slac-berkeley-lab-researchers-prepare-scientific-computing-exascale.
aspx, 2016.

[3] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in Supercomputing (SC),
2012.

[4] R. Hoque, T. Herault, G. Bosilca, and J. Dongarra, “Dynamic task
discovery in parsec: A data-flow task-based runtime,” in Proceedings of
the 8th Workshop on Latest Advances in Scalable Algorithms for Large-
Scale Systems, ser. ScalA ’17. New York, NY, USA: ACM, 2017, pp. 6:1–
6:8. [Online]. Available: http://doi.acm.org/10.1145/3148226.3148233

[5] E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost, M. Sergent,
and S. Thibault, “Achieving high performance on supercomputers with a
sequential task-based programming model,” Inria, Tech. Rep., 2016.

[6] S. Treichler, M. Bauer, and A. Aiken, “Language support for dynamic,
hierarchical data partitioning,” in Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2013.

[7] E. Slaughter, W. Lee, S. Treichler, M. Bauer, and A. Aiken, “Regent: A
high-productivity programming language for HPC with logical regions,”
in Supercomputing (SC), 2015.

[8] E. Slaughter, W. Lee, S. Treichler, W. Zhang, M. Bauer, G. Shipman,
P. McCormick, and A. Aiken, “Control Replication: Compiling implicit
parallelism to efficient SPMD with logical regions,” in Supercomputing
(SC), 2017.

[9] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Code Generation and Optimiza-
tion (CGO), 2004.

[10] “Piz Daint & Piz Dora - CSCS,” http://www.cscs.ch/computers/piz daint,
2016.

[11] W. McKinney, “Data structures for statistical computing in Python,” in
Proceedings of the 9th Python in Science Conference, S. van der Walt
and J. Millman, Eds., 2010, pp. 51 – 56.

[12] S. Van Der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy array:
A structure for efficient numerical computation,” Computing in Science
& Engineering, vol. 13, no. 2, p. 22, 2011.

[13] S. Treichler, M. Bauer, R. Sharma, E. Slaughter, and A. Aiken,
“Dependent partitioning,” in Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). ACM, 2016, pp. 344–358.

[14] E. Slaughter, “Regent: A high-productivity programming language for
implicit parallelism with logical regions,” Ph.D. dissertation, Stanford
University, 2017.

[15] M. Bauer and M. Garland, “Legate: Accelerated and distributed NumPy,”
in Supercomputing (SC), 2019.

[16] “Duck typing,” https://docs.python.org/3/glossary.html#term-duck-typing.
[17] “Numba,” https://numba.pydata.org/, 2012.
[18] D. Bonachea and P. H. Hargrove, “GASNet-EX: A high-performance,

portable communication library for exascale,” Lawrence Berkeley
National Laboratory, Tech. Rep. LBNL-2001174, October 2018,
languages and Compilers for Parallel Computing (LCPC’18). [Online].
Available: https://escholarship.org/uc/item/0xg7b704

[19] R. F. Van der Wijngaart and T. G. Mattson, “The Parallel Research
Kernels,” in HPEC, 2014, pp. 1–6.

[20] C. R. Ferenbaugh, “PENNANT: an unstructured mesh mini-app for
advanced architecture research,” Concurrency and Computation: Practice
and Experience, 2014.

[21] “OpenMP application program interface,” http://www.openmp.org/
wp-content/uploads/OpenMP4.0.0.pdf, 2013.

[22] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell,
and J. Planas, “Ompss: A proposal for programming heterogeneous
multi-core architectures,” Parallel Processing Letters, vol. 21, no. 02, pp.
173–193, 2011.

[23] H. C. Edwards and C. R. Trott, “Kokkos: Enabling performance portability
across manycore architectures,” in Extreme Scaling Workshop (XSW),
2013, Aug 2013, pp. 18–24.

[24] E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R. M. Badia, J. Torres,
T. Cortes, and J. Labarta, “PyCOMPSs: Parallel computational workflows
in Python,” The International Journal of High Performance Computing
Applications, vol. 31, no. 1, pp. 66–82, 2017.

[25] M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” in Python in Science Conference (SciPy), no. 130-136.
Citeseer, 2015.

[26] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, and J. J.
Dongarra, “PaRSEC: Exploiting heterogeneity to enhance scalability,”
Computing in Science & Engineering, vol. 15, no. 6, pp. 36–45, 2013.

[27] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park,
M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan, “Sequoia:
Programming the memory hierarchy,” in SC, November 2006.

[28] T. J. Knight, J. Y. Park, M. Ren, M. Houston, M. Erez, K. Fatahalian,
A. Aiken, W. J. Dally, and P. Hanrahan, “Compilation for explicitly
managed memory hierarchies,” in Principles and Practice of Parallel
Programming (PPoPP), 2007, pp. 226–236.

[29] Q. Meng, A. Humphrey, J. Schmidt, and M. Berzins, “Investigating
applications portability with the Uintah DAG-based runtime system on
petascale supercomputers,” in Supercomputing (SC), 2013, pp. 1–12.

[30] “The Open Community Runtime interface,” https://xstack.exascale-tech.
com/git/public?p=ocr.git;a=blob;f=ocr/spec/ocr-1.1.0.pdf, 2014.

[31] S. Treichler, M. Bauer, and A. Aiken, “Realm: An event-based low-level
runtime for distributed memory architectures,” in Parallel Architectures
and Compilation Techniques (PACT), 2014.

[32] B. L. Chamberlain, “Chapel,” in Programming Models for Parallel
Computing, P. Balaji, Ed. MIT Press, 2015, pp. 129–159.

[33] “Fortran 2008,” https://wg5-fortran.org/f2008.html, 2008.
[34] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishna-

murthy, P. Hilfinger, S. Graham, D. Gay, and P. Colella, “Titanium: A
high-performance Java dialect,” Concurrency Practice and Experience,
vol. 10, no. 11-13, pp. 825–836, 1998.

[35] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K. Warren,
“Introduction to UPC and language specification,” UC Berkeley Technical
Report: CCS-TR-99-157, 1999.

[36] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. Von Praun, and V. Sarkar, “X10: An object-oriented approach to non-
uniform cluster computing,” in OOPSLA, 2005.

[37] L. V. Kalé and S. Krishnan, “CHARM++: A portable concurrent object
oriented system based on C++,” in OOPSLA, 1993, pp. 91–108.

https://lcls.slac.stanford.edu/
https://www6.slac.stanford.edu/news/2016-11-03-slac-berkeley-lab-researchers-prepare-scientific-computing-exascale.aspx
https://www6.slac.stanford.edu/news/2016-11-03-slac-berkeley-lab-researchers-prepare-scientific-computing-exascale.aspx
https://www6.slac.stanford.edu/news/2016-11-03-slac-berkeley-lab-researchers-prepare-scientific-computing-exascale.aspx
http://doi.acm.org/10.1145/3148226.3148233
http://www.cscs.ch/computers/piz_daint
https://docs.python.org/3/glossary.html#term-duck-typing
https://numba.pydata.org/
https://escholarship.org/uc/item/0xg7b704
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://xstack.exascale-tech.com/git/public?p=ocr.git;a=blob;f=ocr/spec/ocr-1.1.0.pdf
https://xstack.exascale-tech.com/git/public?p=ocr.git;a=blob;f=ocr/spec/ocr-1.1.0.pdf
https://wg5-fortran.org/f2008.html

APPENDIX A
ARTIFACT DESCRIPTION

Summary of the Experiments Reported

We perform weak scaling experiments on up to 512 nodes of
the Piz Daint supercomputer [10]. For reproducibility, the exact
version of Legion used in the experiments has been saved in a
branch, along with all scripts used to build and run. Instructions
for building and running are included in the links below.

Artifact Availability

Software Artifact Availability: All author-created software
artifacts are maintained in a public repository under an OSI-
approved license.

Hardware Artifact Availability: There are no author-
created hardware artifacts.

Data Artifact Availability: There are no author-created
data artifacts.

Proprietary Artifacts: None of the associated artifacts,
author-created or otherwise, are proprietary.

List of URLs and/or DOIs where artifacts are available:
Project repository: https://github.com/StanfordLegion/legion/
tree/papers/pygion-paw19

Instructions: https://github.com/StanfordLegion/legion/blob/
papers/pygion-paw19/language/paw19 scripts/README.md

Baseline Experimental Setup, and Modifications Made for the
Paper

Relevant Hardware Details: Piz Daint (Cray XC50, Intel
Xeon E5-2690 v3, NVIDIA Tesla P100, Aries interconnect)

Operating Systems and Versions: CNL based on SLES
12 SP3 running Linux kernel 4.4.162

Compilers and Versions: GCC 6.2.0, CUDA 9.1.85,
LLVM 3.8.1 (Regent only), Python 3.7.3 (Legion Python only)

Applications and Versions: All benchmarks are included
in the Legion repository

Libraries and Versions: NumPy 1.16.4, CFFI 1.12.3
Key Algorithms: N/A
Input Datasets and Versions: N/A
Paper Modifications: N/A
Output from scripts that gathers execution environment

information:
CRAY_CUDATOOLKIT_VERSION=9.1.85_3.18-6.0.7.0_5.1__g2eb7c52
PE_TPSL_64_DEFAULT_GENCOMPS_INTEL_mic_knl=160
PE_SMA_DEFAULT_PKGCONFIG_VARIABLES=PE_SMA_COMPFLAG_@prgenv@
PE_LIBSCI_VOLATILE_PRGENV=CRAY GNU INTEL
KSH_AUTOLOAD=1
MODULE_VERSION_STACK=3.2.10.6
LESSKEY=/etc/lesskey.bin
PE_TPSL_DEFAULT_GENCOMPS_INTEL_x86_skylake=160
PE_PETSC_DEFAULT_GENCOMPS_CRAY_skylake=86
PE_PETSC_DEFAULT_GENCOMPILERS_CRAY_sandybridge=8.6
PE_PAPI_DEFAULT_ACCEL_FAMILY_LIBS_nvidia=,-lcupti,-lcudart,-lcuda
GNU_VERSION=6.2.0
PE_MPICH_GENCOMPILERS_PGI=15.3
PE_CXX_PKGCONFIG_LIBS=mpichcxx
NNTPSERVER=news
MANPATH=/opt/nvidia/cudatoolkit9.1/9.1.85_3.18-6.0.7.0_5.1__g2eb7c52/

doc/man:/opt/cray/pe/perftools/7.0.3/man:/opt/cray/pe/papi
/5.6.0.3/share/pdoc/man:/opt/cray/pe/atp/2.1.2/man:/opt/cray/
alps/6.6.43-6.0.7.1_5.45__ga796da32.ari/man:/opt/cray/job
/2.2.3-6.0.7.1_5.43__g6c4e934.ari/man:/opt/cray/pe/pmi/5.0.14/
man:/opt/cray/pe/libsci/18.07.1/man:/opt/cray/pe/man/csmlversion
:/opt/cray/pe/craype/2.5.15/man:/opt/gcc/6.2.0/snos/share/man:/
opt/slurm/17.11.12.cscs/share/man:/opt/cray/pe/mpt/7.7.2/gni/man
/mpich:/opt/cray/pe/modules/3.2.10.6/share/man:/opt/slurm/
default/share/man:/usr/local/man:/usr/share/man:/opt/cray/share/
man:/opt/cray/pe/man

SLURM_JOB_NAME=bash
PE_HDF5_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH
XALT_ETC_DIR=/apps/daint/UES/xalt/0.7.6/etc
PE_TRILINOS_DEFAULT_GENCOMPS_CRAY_x86_64=86
PE_TPSL_64_DEFAULT_GENCOMPS_INTEL_interlagos=160
PE_PETSC_DEFAULT_GENCOMPILERS_INTEL_mic_knl=16.0
PE_LIBSCI_ACC_DEFAULT_PKGCONFIG_VARIABLES=

PE_LIBSCI_ACC_DEFAULT_NV_SUFFIX_@accelerator@
PE_FFTW_DEFAULT_TARGET_mic_knl=mic_knl
CRAY_UDREG_INCLUDE_OPTS=-I/opt/cray/udreg/2.3.2-6.0.7.1_5.13

__g5196236.ari/include
PE_TRILINOS_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/trilinos

/12.12.1.0/@PRGENV@/@PE_TRILINOS_DEFAULT_GENCOMPS@/
@PE_TRILINOS_DEFAULT_TARGET@/lib/pkgconfig

PE_SMA_DEFAULT_COMPFLAG_GNU=-fcray-pointer
PE_PARALLEL_NETCDF_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/

parallel-netcdf/1.8.1.3/@PRGENV@/
@PE_PARALLEL_NETCDF_DEFAULT_GENCOMPS@/lib/pkgconfig

PE_NETCDF_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/netcdf
/4.6.1.2/@PRGENV@/@PE_NETCDF_DEFAULT_GENCOMPS@/lib/pkgconfig

LIBRARYMODULES=acml:alps:cray-dwarf:cray-fftw:cray-ga:cray-hdf5:cray-
hdf5-parallel:cray-libsci:cray-libsci_acc:cray-mpich:cray-mpich2
:cray-mpich-abi:cray-netcdf:cray-netcdf-hdf5parallel:cray-
parallel-netcdf:cray-petsc:cray-petsc-complex:cray-shmem:cray-
tpsl:cray-trilinos:cudatoolkit:fftw:ga:hdf5:hdf5-parallel:iobuf:
libfast:netcdf:netcdf-hdf5parallel:ntk:onesided:papi:petsc:petsc
-complex:pmi:tpsl:trilinos:xt-libsci:xt-mpich2:xt-mpt:xt-papi

CRAY_SITE_LIST_DIR=/etc/opt/cray/pe/modules
XKEYSYMDB=/usr/X11R6/lib/X11/XKeysymDB
PE_TPSL_64_DEFAULT_GENCOMPILERS_CRAY_x86_64=8.6
PE_SMA_DEFAULT_COMPFLAG=
PE_MPICH_ALTERNATE_LIBS_dpm=_dpm
PE_HDF5_DEFAULT_GENCOMPILERS_GNU=7.1 6.1 5.3 4.9
PE_ENV=GNU
SLURM_NODE_ALIASES=(null)
PKGCONFIG_ENABLED=1
PE_TPSL_DEFAULT_GENCOMPS_CRAY_x86_skylake=86
HOST=daint105
TERM=xterm-256color
SHELL=/usr/local/bin/bash
PE_TPSL_DEFAULT_GENCOMPILERS_GNU_x86_skylake=7.1 6.1
PE_PETSC_DEFAULT_GENCOMPS_CRAY_sandybridge=86
PROFILEREAD=true
HISTSIZE=
SLURM_JOB_QOS=normal
PE_TRILINOS_DEFAULT_VOLATILE_PRGENV=CRAY GNU INTEL
PE_TPSL_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH:PE_LIBSCI
PE_TPSL_DEFAULT_GENCOMPS_GNU_sandybridge=71 53 49
PE_TPSL_64_DEFAULT_GENCOMPS_INTEL_x86_skylake=160
PE_PETSC_DEFAULT_GENCOMPS_INTEL_haswell=160
PE_PETSC_DEFAULT_GENCOMPS_GNU_haswell=71 53 49
PE_PARALLEL_NETCDF_DEFAULT_VOLATILE_PRGENV=GNU
PE_NETCDF_DEFAULT_VOLATILE_PRGENV=GNU
CRAY_XPMEM_POST_LINK_OPTS=-L/opt/cray/xpmem/2.2.15-6.0.7.1_5.11

__g7549d06.ari/lib64
CRAY_UGNI_POST_LINK_OPTS=-L/opt/cray/ugni/6.0.14.0-6.0.7.1_3.13

__gea11d3d.ari/lib64
CRAYPE_DIR=/opt/cray/pe/craype/2.5.15
SLURM_CSCS=yes
PE_MPICH_DIR_PGI_DEFAULT64=64
PE_PETSC_DEFAULT_GENCOMPS_CRAY_interlagos=86
PE_NETCDF_HDF5PARALLEL_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/

netcdf-hdf5parallel/4.6.1.2/@PRGENV@/
@PE_NETCDF_HDF5PARALLEL_DEFAULT_GENCOMPS@/lib/pkgconfig

PE_HDF5_PARALLEL_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/hdf5-
parallel/1.10.2.0/@PRGENV@/@PE_HDF5_PARALLEL_DEFAULT_GENCOMPS@/
lib/pkgconfig

PE_HDF5_DEFAULT_VOLATILE_PRGENV=GNU
PE_FFTW_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/fftw/3.3.6.5/

@PE_FFTW_DEFAULT_TARGET@/lib/pkgconfig
ALT_LINKER=/apps/daint/UES/xalt/0.7.6/bin/ld
CRAY_MPICH2_DIR=/opt/cray/pe/mpt/7.7.2/gni/mpich-gnu/7.1
PERL5LIB=/opt/slurm/17.11.12.cscs//lib/perl5/site_perl/5.18.2/x86_64-

linux-thread-multi:/opt/slurm/default/lib/perl5/site_perl
/5.18.2/x86_64-linux-thread-multi:

CRAY_CUDATOOLKIT_POST_LINK_OPTS=-L/opt/nvidia/cudatoolkit9.1/9.1.85_3
.18-6.0.7.0_5.1__g2eb7c52/lib64 -L/opt/nvidia/cudatoolkit9
.1/9.1.85_3.18-6.0.7.0_5.1__g2eb7c52/extras/CUPTI/lib64 -Wl,--as
-needed -Wl,-lcupti -Wl,-lcudart -Wl,--no-as-needed -L/opt/cray/
nvidia/default/lib64 -lcuda

PE_TPSL_DEFAULT_GENCOMPS_CRAY_mic_knl=86
PE_TPSL_64_DEFAULT_GENCOMPILERS_CRAY_interlagos=8.6
PE_LIBSCI_DEFAULT_GENCOMPS_GNU_x86_64=71 61 51 49
PE_GA_DEFAULT_VOLATILE_PRGENV=GNU
PE_TPSL_DEFAULT_GENCOMPS_INTEL_x86_64=160
PE_MPICH_DEFAULT_GENCOMPILERS_GNU=7.1 5.1 4.9
PE_LIBSCI_ACC_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH:PE_LIBSCI
PE_LIBSCI_ACC_DEFAULT_GENCOMPS_CRAY_x86_64=85
PERFTOOLS_VERSION=7.0.3
PE_MPICH_GENCOMPS_GNU=71 51 49
PE_PKGCONFIG_PRODUCTS=PE_LIBSCI:PE_MPICH
FPATH=:/opt/cray/pe/modules/3.2.10.6/init/sh_funcs/no_redirect:/opt/

cray/pe/modules/3.2.10.6/init/sh_funcs/no_redirect
MORE=-sl
PE_TPSL_64_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/tpsl/18.06.1/

@PRGENV@64/@PE_TPSL_64_DEFAULT_GENCOMPS@/
@PE_TPSL_64_DEFAULT_TARGET@/lib/pkgconfig

PE_TPSL_64_DEFAULT_GENCOMPS_CRAY_haswell=86
PE_PETSC_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH:PE_LIBSCI:

PE_HDF5_PARALLEL:PE_TPSL

https://github.com/StanfordLegion/legion/tree/papers/pygion-paw19
https://github.com/StanfordLegion/legion/tree/papers/pygion-paw19
https://github.com/StanfordLegion/legion/blob/papers/pygion-paw19/language/paw19_scripts/README.md
https://github.com/StanfordLegion/legion/blob/papers/pygion-paw19/language/paw19_scripts/README.md

PE_PAPI_DEFAULT_ACCEL_LIBS_nvidia35=,-lcupti,-lcudart,-lcuda
PE_TRILINOS_DEFAULT_GENCOMPILERS_CRAY_x86_64=8.6
PE_CRAY_DEFAULT_FIXED_PKGCONFIG_PATH=/opt/cray/pe/parallel-netcdf

/1.8.1.3/CRAY/8.6/lib/pkgconfig:/opt/cray/pe/netcdf-hdf5parallel
/4.6.1.2/CRAY/8.6/lib/pkgconfig:/opt/cray/pe/netcdf/4.6.1.2/CRAY
/8.6/lib/pkgconfig:/opt/cray/pe/hdf5-parallel/1.10.2.0/CRAY/8.6/
lib/pkgconfig:/opt/cray/pe/hdf5/1.10.2.0/CRAY/8.6/lib/pkgconfig
:/opt/cray/pe/ga/5.3.0.8/CRAY/8.6/lib/pkgconfig

PE_TPSL_64_DEFAULT_GENCOMPILERS_CRAY_sandybridge=8.6
PE_PETSC_DEFAULT_GENCOMPS_CRAY_x86_64=86
PE_LIBSCI_DEFAULT_OMP_REQUIRES_openmp=_mp
PE_FORTRAN_PKGCONFIG_LIBS=mpichf90
SLURM_SPANK_SHIFTER_GID=31707
PE_SMA_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/mpt/7.7.2/gni/

sma@PE_SMA_DEFAULT_DIR_DEFAULT64@/lib64/pkgconfig
CRAYPAT_LD_LIBRARY_PATH=/opt/cray/pe/gcc-libs:/opt/cray/gcc-libs:/opt

/cray/pe/perftools/7.0.3/lib64
CRAYPAT_ALPS_COMPONENT=/opt/cray/pe/perftools/7.0.3/sbin/pat_alps
ALLINEA_QUEUE_DLL=/opt/cray/pe/mpt/7.7.2/gni/mpich-gnu/7.1/lib/

libtvmpich.so.3.0.1
PE_TRILINOS_DEFAULT_GENCOMPS_INTEL_x86_64=160
PE_LIBSCI_ACC_DEFAULT_VOLATILE_PRGENV=CRAY GNU
CRAY_MPICH_BASEDIR=/opt/cray/pe/mpt/7.7.2/gni
PE_TPSL_64_DEFAULT_GENCOMPS_INTEL_haswell=160
PE_TPSL_64_DEFAULT_GENCOMPS_CRAY_x86_skylake=86
PE_NETCDF_HDF5PARALLEL_DEFAULT_GENCOMPILERS_GNU=7.1 6.1 5.3 4.9
PE_HDF5_PARALLEL_DEFAULT_GENCOMPILERS_GNU=7.1 6.1 5.3 4.9
HISTFILESIZE=
JRE_HOME=/usr/lib64/jvm/java/jre
SLURM_NNODES=1
CRAYPE_LINK_TYPE=dynamic
PE_TRILINOS_DEFAULT_GENCOMPILERS_INTEL_x86_64=160
PE_TRILINOS_DEFAULT_GENCOMPILERS_GNU_x86_64=71 53 49
PE_TPSL_DEFAULT_GENCOMPS_CRAY_x86_64=86
PE_TPSL_64_DEFAULT_GENCOMPILERS_INTEL_mic_knl=16.0
PE_PETSC_DEFAULT_GENCOMPILERS_INTEL_interlagos=16.0
PE_LIBSCI_DEFAULT_VOLATILE_PRGENV=CRAY GNU INTEL
PE_FFTW_DEFAULT_TARGET_interlagos=interlagos
LD_LIBRARY_PATH=/opt/cray/pe/papi/5.6.0.3/lib64:/opt/cray/job

/2.2.3-6.0.7.1_5.43__g6c4e934.ari/lib64:/opt/gcc/6.2.0/snos/
lib64

LS_COLORS=no=00:fi=00:di=01;34:ln=00;36:pi=40;33:so=01;35:do=01;35:bd
=40;33;01:cd=40;33;01:or=41;33;01:ex=00;32:*.cmd=00;32:*.exe
=01;32:*.com=01;32:*.bat=01;32:*.btm=01;32:*.dll=01;32:*.tar
=00;31:*.tbz=00;31:*.tgz=00;31:*.rpm=00;31:*.deb=00;31:*.arj
=00;31:*.taz=00;31:*.lzh=00;31:*.lzma=00;31:*.zip=00;31:*.zoo
=00;31:*.z=00;31:*.Z=00;31:*.gz=00;31:*.bz2=00;31:*.tb2=00;31:*.
tz2=00;31:*.tbz2=00;31:*.xz=00;31:*.avi=01;35:*.bmp=01;35:*.fli
=01;35:*.gif=01;35:*.jpg=01;35:*.jpeg=01;35:*.mng=01;35:*.mov
=01;35:*.mpg=01;35:*.pcx=01;35:*.pbm=01;35:*.pgm=01;35:*.png
=01;35:*.ppm=01;35:*.tga=01;35:*.tif=01;35:*.xbm=01;35:*.xpm
=01;35:*.dl=01;35:*.gl=01;35:*.wmv=01;35:*.aiff=00;32:*.au
=00;32:*.mid=00;32:*.mp3=00;32:*.ogg=00;32:*.voc=00;32:*.wav
=00;32:

SLURM_LOG_ACTIONS=yes
PE_TPSL_64_DEFAULT_GENCOMPILERS_INTEL_haswell=16.0
PE_TPSL_64_DEFAULT_GENCOMPILERS_GNU_sandybridge=7.1 5.3 4.9
PE_PETSC_DEFAULT_VOLATILE_PRGENV=CRAY CRAY64 GNU GNU64 INTEL INTEL64
PE_LIBSCI_PKGCONFIG_VARIABLES=PE_LIBSCI_OMP_REQUIRES_@openmp@:

PE_SCI_EXT_LIBPATH:PE_SCI_EXT_LIBNAME
CRAY_RCA_POST_LINK_OPTS=-L/opt/cray/rca/2.2.18-6.0.7.1_5.47__g2aa4f39

.ari/lib64 -lrca
PE_MPICH_FIXED_PRGENV=INTEL
PE_PKGCONFIG_LIBS=cray-cudatoolkit:AtpSigHandler:cray-rca:libsci_mpi:

libsci:mpich
SINFO_FORMAT=%9P %5a %8s %.10l %.6c %.6z %.7D %10T %N
PE_TPSL_DEFAULT_GENCOMPS_GNU_haswell=71 53 49
PE_PETSC_DEFAULT_GENCOMPS_INTEL_sandybridge=160
PE_PETSC_DEFAULT_GENCOMPS_INTEL_interlagos=160
PE_PETSC_DEFAULT_GENCOMPS_GNU_sandybridge=71 53 49
PE_PETSC_DEFAULT_GENCOMPS_GNU_interlagos=71 53 49
PE_PETSC_DEFAULT_GENCOMPILERS_INTEL_skylake=16.0
PE_PETSC_DEFAULT_GENCOMPILERS_CRAY_x86_64=8.6
PE_PETSC_DEFAULT_GENCOMPILERS_CRAY_mic_knl=8.6
XNLSPATH=/usr/share/X11/nls
PE_TPSL_64_DEFAULT_GENCOMPS_INTEL_sandybridge=160
PE_TPSL_64_DEFAULT_GENCOMPILERS_GNU_interlagos=7.1 5.3 4.9
PE_PETSC_DEFAULT_GENCOMPS_INTEL_mic_knl=160
PE_PETSC_DEFAULT_GENCOMPS_GNU_mic_knl=53
PE_PETSC_DEFAULT_GENCOMPILERS_CRAY_haswell=8.6
PE_PAPI_DEFAULT_PKGCONFIG_VARIABLES=PE_PAPI_ACCEL_LIBS_@accelerator@
PE_LIBSCI_DEFAULT_GENCOMPS_CRAY_x86_64=86
MPICH_ABORT_ON_ERROR=1
MPICH_DIR=/opt/cray/pe/mpt/7.7.2/gni/mpich-gnu/7.1
PE_TPSL_64_DEFAULT_GENCOMPILERS_CRAY_haswell=8.6
PE_PETSC_DEFAULT_GENCOMPILERS_INTEL_sandybridge=16.0
PE_NETCDF_HDF5PARALLEL_DEFAULT_REQUIRED_PRODUCTS=PE_HDF5_PARALLEL
PE_HDF5_PARALLEL_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH
PE_FFTW_DEFAULT_TARGET_sandybridge=sandybridge
PE_FFTW_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH
CRAY_PRGENVGNU=loaded
ATP_POST_LINK_OPTS=-Wl,-L/opt/cray/pe/atp/2.1.2/libApp/
PE_MPICH_FORTRAN_PKGCONFIG_LIBS=mpichf90
HOSTTYPE=x86_64
PE_PETSC_DEFAULT_GENCOMPILERS_GNU_mic_knl=5.3
RCLOCAL_PRGENV=true
TMOUT=259200
gcc_already_loaded=0
PE_TPSL_DEFAULT_GENCOMPS_GNU_interlagos=71 53 49
PE_TPSL_DEFAULT_GENCOMPILERS_CRAY_x86_64=8.6

PE_LIBSCI_GENCOMPS_INTEL_x86_64=160
PE_LIBSCI_DEFAULT_GENCOMPILERS_INTEL_x86_64=16.0
OFFLOAD_INIT=on_start
GCC_VERSION=6.2.0
CHPL_CG_CPP_LINES=1
PE_PRODUCT_LIST=CRAY_RCA:CRAY_ALPS:DVS:CRAY_XPMEM:CRAY_DMAPP:CRAY_PMI

:CRAY_UGNI:CRAY_UDREG:CRAY_LIBSCI:CRAYPE:CRAYPE_HASWELL:GNU:GCC:
PERFTOOLS:CRAYPAT

FROM_HEADER=
APPS=/apps/daint
PE_TPSL_DEFAULT_GENCOMPS_GNU_x86_skylake=71 61
PE_PETSC_DEFAULT_GENCOMPILERS_GNU_x86_64=7.1 5.3 4.9
PE_MPICH_DEFAULT_GENCOMPS_PGI=153
CRAY_MPICH_ROOTDIR=/opt/cray/pe/mpt/7.7.2
PAGER=less
PE_TPSL_64_DEFAULT_GENCOMPILERS_INTEL_x86_64=16.0
PE_PETSC_DEFAULT_GENCOMPS_INTEL_skylake=160
PE_PETSC_DEFAULT_GENCOMPS_GNU_skylake=61
PE_LIBSCI_GENCOMPILERS_GNU_x86_64=7.1 6.1 5.1 4.9
PE_MPICH_MODULE_NAME=cray-mpich
PE_MPICH_GENCOMPILERS_CRAY=8.6
CSHEDIT=emacs
PE_TPSL_DEFAULT_GENCOMPS_CRAY_sandybridge=86
PE_TPSL_DEFAULT_GENCOMPS_CRAY_haswell=86
PE_TPSL_64_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH:PE_LIBSCI
PE_MPICH_TARGET_VAR_nvidia20=-lcudart
PE_MPICH_DEFAULT_VOLATILE_PRGENV=CRAY GNU PGI
PE_LIBSCI_GENCOMPS_CRAY_x86_64=86
PE_LIBSCI_DEFAULT_GENCOMPILERS_CRAY_x86_64=8.6
CRAYPAT_ROOT=/opt/cray/pe/perftools/7.0.3
XDG_CONFIG_DIRS=/etc/xdg
PE_TPSL_64_DEFAULT_GENCOMPS_GNU_x86_64=71 53 49
PE_TPSL_64_DEFAULT_GENCOMPS_GNU_mic_knl=71 53
PE_PARALLEL_NETCDF_DEFAULT_GENCOMPS_GNU=51 49
PE_NETCDF_DEFAULT_GENCOMPS_GNU=
PE_LIBSCI_PKGCONFIG_LIBS=libsci_mpi:libsci
PE_LIBSCI_ACC_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/libsci_acc

/18.07.1/@PRGENV@/@PE_LIBSCI_ACC_DEFAULT_GENCOMPS@/
@PE_LIBSCI_ACC_DEFAULT_TARGET@/lib/pkgconfig

DVS_VERSION=0.9.0
CRAY_LIBSCI_DIR=/opt/cray/pe/libsci/18.07.1
CRAY_LIBSCI_BASE_DIR=/opt/cray/pe/libsci/18.07.1
CRAY_DMAPP_INCLUDE_OPTS=-I/opt/cray/dmapp/7.1.1-6.0.7.1_5.45

__g5a674e0.ari/include -I/opt/cray/gni-headers/5.0.12.0-6.0.7.1
_3.11__g3b1768f.ari/include

USERMODULES=acml:alps:apprentice:apprentice2:atp:blcr:cce:chapel:cray
-ccdb:cray-fftw:cray-ga:cray-hdf5:cray-hdf5-parallel:cray-lgdb:
cray-libsci:cray-libsci_acc:cray-mpich:cray-mpich2:cray-mpich-
compat:cray-netcdf:cray-netcdf-hdf5parallel:cray-parallel-netcdf
:craypat:craype:cray-petsc:cray-petsc-complex:craypkg-gen:cray-
shmem:cray-snplauncher:cray-tpsl:cray-trilinos:cudatoolkit:ddt:
fftw:ga:gcc:hdf5:hdf5-parallel:intel:iobuf:java:lgdb:libfast:
libsci_acc:mpich1:netcdf:netcdf-hdf5parallel:netcdf-nofsync:
netcdf-nofsync-hdf5parallel:ntk:onesided:papi:parallel-netcdf:
pathscale:perftools:perftools-lite:petsc:petsc-complex:pgi:pmi:
PrgEnv-cray:PrgEnv-gnu:PrgEnv-intel:PrgEnv-pathscale:PrgEnv-pgi:
stat:totalview:tpsl:trilinos:xt-asyncpe:xt-craypat:xt-lgdb:xt-
libsci:xt-mpich2:xt-mpt:xt-papi:xt-shmem:xt-totalview

LIBGL_DEBUG=quiet
MINICOM=-c on
PE_TPSL_DEFAULT_GENCOMPS_CRAY_interlagos=86
PE_TPSL_DEFAULT_GENCOMPILERS_GNU_x86_64=7.1 5.3 4.9
PE_PKGCONFIG_DEFAULT_PRODUCTS=PE_TRILINOS:PE_TPSL_64:PE_TPSL:PE_PETSC

:PE_PARALLEL_NETCDF:PE_NETCDF_HDF5PARALLEL:PE_NETCDF:PE_MPICH:
PE_LIBSCI_ACC:PE_LIBSCI:PE_HDF5_PARALLEL:PE_HDF5:PE_GA:PE_FFTW

PE_HDF5_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/hdf5/1.10.2.0/
@PRGENV@/@PE_HDF5_DEFAULT_GENCOMPS@/lib/pkgconfig

PAT_REPORT_PRUNE_NAME=_cray$mt_execute_,_cray$mt_start_,__cray_hwpc_,
f_cray_hwpc_,cstart,__pat_,pat_region_,PAT_,OMP.slave_loop,
slave_entry,_new_slave_entry,_thread_pool_slave_entry,
THREAD_POOL_join,__libc_start_main,_start,__start,start_thread,
__wrap_,UPC_ADIO_,_upc_,upc_,__caf_,__pgas_,syscall,
__device_stub

PE_MPICH_GENCOMPILERS_GNU=7.1 5.1 4.9
MODULE_VERSION=3.2.10.6
SLURM_TASKS_PER_NODE=24
PE_TPSL_DEFAULT_GENCOMPILERS_GNU_haswell=7.1 5.3 4.9
PE_TPSL_64_DEFAULT_GENCOMPILERS_GNU_x86_skylake=7.1 6.1
PE_PETSC_DEFAULT_GENCOMPS_CRAY_mic_knl=86
PE_PARALLEL_NETCDF_DEFAULT_GENCOMPILERS_GNU=5.1 4.9
PE_NETCDF_DEFAULT_GENCOMPILERS_GNU=7.1 6.1 5.3 4.9
PE_MPICH_DEFAULT_DIR_PGI_DEFAULT64=64
PE_FFTW_DEFAULT_TARGET_abudhabi=abudhabi
ATP_IGNORE_SIGTERM=1
XTPE_NETWORK_TARGET=aries
CSCS_CUSTOM_ENV=true
CPU=x86_64
_=/usr/bin/env
PE_TPSL_64_DEFAULT_GENCOMPILERS_CRAY_x86_skylake=8.6
PE_SMA_DEFAULT_DIR_CRAY_DEFAULT64=64
PE_NETCDF_HDF5PARALLEL_DEFAULT_GENCOMPS_GNU=
PE_NETCDF_HDF5PARALLEL_DEFAULT_FIXED_PRGENV=CRAY PGI INTEL
PE_HDF5_PARALLEL_DEFAULT_GENCOMPS_GNU=
PE_HDF5_PARALLEL_DEFAULT_FIXED_PRGENV=CRAY PGI INTEL
SQUEUE_SORT=-t,e,S
JAVA_BINDIR=/usr/lib64/jvm/java/bin
SLURM_JOB_ID=14250172
PE_TPSL_DEFAULT_GENCOMPS_INTEL_interlagos=160
PE_TPSL_DEFAULT_GENCOMPILERS_CRAY_mic_knl=8.6

PE_TPSL_64_DEFAULT_VOLATILE_PRGENV=CRAY CRAY64 GNU GNU64 INTEL
INTEL64

PE_TPSL_64_DEFAULT_GENCOMPS_CRAY_sandybridge=86
CRAY_UDREG_POST_LINK_OPTS=-L/opt/cray/udreg/2.3.2-6.0.7.1_5.13

__g5196236.ari/lib64
PE_TPSL_DEFAULT_GENCOMPS_GNU_mic_knl=71 53
CRAY_ALPS_POST_LINK_OPTS=-L/opt/cray/alps/6.6.43-6.0.7.1_5.45

__ga796da32.ari/lib64
CRAYPE_VERSION=2.5.15
PE_MPICH_VOLATILE_PRGENV=CRAY GNU PGI
PE_TPSL_DEFAULT_GENCOMPILERS_INTEL_haswell=16.0
PE_PETSC_DEFAULT_GENCOMPILERS_GNU_sandybridge=7.1 5.3 4.9
PE_MPICH_DEFAULT_GENCOMPS_CRAY=86
PE_LIBSCI_DEFAULT_OMP_REQUIRES=
XALT_TRANSMISSION_STYLE=directdb
LMFILES=/opt/cray/pe/modulefiles/modules/3.2.10.6:/opt/cray/pe/

modulefiles/cray-mpich/7.7.2:/opt/modulefiles/slurm/17.11.12.
cscs-1:/apps/daint/UES/easybuild/modulefiles/xalt/daint
-2016.11:/apps/daint/UES/easybuild/modulefiles/daint-gpu:/opt/
modulefiles/gcc/6.2.0:/opt/cray/pe/craype/2.5.15/modulefiles/
craype-haswell:/opt/cray/pe/craype/2.5.15/modulefiles/craype-
network-aries:/opt/cray/pe/modulefiles/craype/2.5.15:/opt/cray/
pe/modulefiles/cray-libsci/18.07.1:/opt/cray/ari/modulefiles/
udreg/2.3.2-6.0.7.1_5.13__g5196236.ari:/opt/cray/ari/modulefiles
/ugni/6.0.14.0-6.0.7.1_3.13__gea11d3d.ari:/opt/cray/pe/
modulefiles/pmi/5.0.14:/opt/cray/ari/modulefiles/dmapp
/7.1.1-6.0.7.1_5.45__g5a674e0.ari:/opt/cray/ari/modulefiles/gni-
headers/5.0.12.0-6.0.7.1_3.11__g3b1768f.ari:/opt/cray/ari/
modulefiles/xpmem/2.2.15-6.0.7.1_5.11__g7549d06.ari:/opt/cray/
ari/modulefiles/job/2.2.3-6.0.7.1_5.43__g6c4e934.ari:/opt/cray/
ari/modulefiles/dvs/2.7_2.2.118-6.0.7.1_10.2__g58b37a2:/opt/cray
/ari/modulefiles/alps/6.6.43-6.0.7.1_5.45__ga796da32.ari:/opt/
cray/ari/modulefiles/rca/2.2.18-6.0.7.1_5.47__g2aa4f39.ari:/opt/
cray/pe/modulefiles/atp/2.1.2:/opt/cray/pe/modulefiles/perftools
-base/7.0.3:/opt/cray/pe/modulefiles/PrgEnv-gnu/6.0.4:/opt/cray/
modulefiles/cudatoolkit/9.1.85_3.18-6.0.7.0_5.1__g2eb7c52

TARGETMODULES=craype-abudhabi:craype-abudhabi-cu:craype-accel-host:
craype-accel-nvidia20:craype-accel-nvidia30:craype-accel-
nvidia35:craype-barcelona:craype-broadwell:craype-haswell:craype
-hugepages128K:craype-hugepages128M:craype-hugepages16M:craype-
hugepages256M:craype-hugepages2M:craype-hugepages32M:craype-
hugepages4M:craype-hugepages512K:craype-hugepages512M:craype-
hugepages64M:craype-hugepages8M:craype-intel-knc:craype-
interlagos:craype-interlagos-cu:craype-istanbul:craype-ivybridge
:craype-mc12:craype-mc8:craype-mic-knl:craype-network-aries:
craype-network-gemini:craype-network-infiniband:craype-network-
none:craype-network-seastar:craype-sandybridge:craype-shanghai:
craype-target-compute_node:craype-target-local_host:craype-
target-native:craype-xeon:xtpe-barcelona:xtpe-interlagos:xtpe-
interlagos-cu:xtpe-istanbul:xtpe-mc12:xtpe-mc8:xtpe-network-
gemini:xtpe-network-seastar:xtpe-shanghai:xtpe-target-native:
xtpe-xeon

JAVA_HOME=/usr/lib64/jvm/java
PE_TPSL_DEFAULT_GENCOMPILERS_GNU_mic_knl=7.1 5.3
PE_TPSL_DEFAULT_GENCOMPILERS_CRAY_interlagos=8.6
PE_PETSC_DEFAULT_GENCOMPILERS_CRAY_skylake=8.6
PE_LIBSCI_MODULE_NAME=cray-libsci/18.07.1
PE_LIBSCI_ACC_DEFAULT_NV_SUFFIX_nvidia20=nv20
EDITOR=emacs --no-window-system
PE_TPSL_64_DEFAULT_GENCOMPS_GNU_x86_skylake=71 61
PE_INTEL_FIXED_PKGCONFIG_PATH=/opt/cray/pe/mpt/7.7.2/gni/mpich-intel

/16.0/lib/pkgconfig
LANG=en_US.UTF-8
PE_MPICH_NV_LIBS_nvidia20=-lcudart
PE_LIBSCI_GENCOMPILERS_CRAY_x86_64=8.6
PE_MPICH_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/mpt/7.7.2/gni/mpich-

@PRGENV@@PE_MPICH_DIR_DEFAULT64@/@PE_MPICH_GENCOMPS@/lib/
pkgconfig

MODULEPATH=/opt/cray/pe/perftools/7.0.3/modulefiles:/opt/cray/pe/
craype/2.5.15/modulefiles:/apps/daint/UES/jenkins/6.0.UP07/gpu/
easybuild/tools/modules/all:/apps/daint/UES/jenkins/6.0.UP07/gpu
/easybuild/modules/all:/apps/daint/modulefiles:/apps/daint/
system/modulefiles:/apps/daint/UES/easybuild/modulefiles:/apps/
common/UES/modulefiles:/apps/common/system/modulefiles:/opt/cray
/pe/modulefiles:/opt/cray/modulefiles:/opt/modulefiles:/opt/cray
/ari/modulefiles:/opt/cray/pe/ari/modulefiles

PYTHONSTARTUP=/etc/pythonstart
SHMEM_ABORT_ON_ERROR=1
LOADEDMODULES=modules/3.2.10.6:cray-mpich/7.7.2:slurm/17.11.12.cscs

-1:xalt/daint-2016.11:daint-gpu:gcc/6.2.0:craype-haswell:craype-
network-aries:craype/2.5.15:cray-libsci/18.07.1:udreg
/2.3.2-6.0.7.1_5.13__g5196236.ari:ugni/6.0.14.0-6.0.7.1_3.13
__gea11d3d.ari:pmi/5.0.14:dmapp/7.1.1-6.0.7.1_5.45__g5a674e0.ari
:gni-headers/5.0.12.0-6.0.7.1_3.11__g3b1768f.ari:xpmem
/2.2.15-6.0.7.1_5.11__g7549d06.ari:job/2.2.3-6.0.7.1_5.43
__g6c4e934.ari:dvs/2.7_2.2.118-6.0.7.1_10.2__g58b37a2:alps
/6.6.43-6.0.7.1_5.45__ga796da32.ari:rca/2.2.18-6.0.7.1_5.47
__g2aa4f39.ari:atp/2.1.2:perftools-base/7.0.3:PrgEnv-gnu/6.0.4:
cudatoolkit/9.1.85_3.18-6.0.7.0_5.1__g2eb7c52

TZ=Europe/Zurich
SDK_HOME=/usr/lib64/jvm/java
PE_TPSL_DEFAULT_GENCOMPILERS_INTEL_mic_knl=16.0
PE_TPSL_64_DEFAULT_GENCOMPS_GNU_interlagos=71 53 49
PE_PKG_CONFIG_PATH=/opt/cray/pe/cti/1.0.7/lib/pkgconfig:/opt/cray/pe/

cti/1.0.6/lib/pkgconfig:/opt/cray/pe/cti/1.0.4/lib/pkgconfig
PE_FFTW_DEFAULT_TARGET_x86_skylake=x86_skylake
PE_FFTW_DEFAULT_TARGET_share=share
PE_FFTW_DEFAULT_TARGET_ivybridge=ivybridge
CRAY_DMAPP_POST_LINK_OPTS=-L/opt/cray/dmapp/7.1.1-6.0.7.1_5.45

__g5a674e0.ari/lib64

PE_TPSL_DEFAULT_GENCOMPILERS_CRAY_x86_skylake=8.6
PE_PETSC_DEFAULT_GENCOMPILERS_GNU_skylake=6.1
PE_LIBSCI_OMP_REQUIRES_openmp=_mp
PAT_BUILD_PAPI_BASEDIR=/opt/cray/pe/papi/5.6.0.3
CRAY_RCA_INCLUDE_OPTS=-I/opt/cray/rca/2.2.18-6.0.7.1_5.47__g2aa4f39.

ari/include -I/opt/cray/krca/2.2.4-6.0.7.1_5.43__g8505b97.ari/
include -I/opt/cray-hss-devel/8.0.0/include

PE_TPSL_DEFAULT_GENCOMPILERS_INTEL_x86_64=16.0
PE_TPSL_64_DEFAULT_GENCOMPS_CRAY_mic_knl=86
PE_MPICH_CXX_PKGCONFIG_LIBS=mpichcxx
CRAY_MPICH_DIR=/opt/cray/pe/mpt/7.7.2/gni/mpich-gnu/7.1
PE_MPICH_PKGCONFIG_VARIABLES=PE_MPICH_NV_LIBS_@accelerator@:

PE_MPICH_ALTERNATE_LIBS_@multithreaded@:
PE_MPICH_ALTERNATE_LIBS_@dpm@

PE_LIBSCI_DEFAULT_GENCOMPS_INTEL_x86_64=160
PE_LIBSCI_ACC_DEFAULT_GENCOMPILERS_GNU_x86_64=4.9
SQUEUE_FORMAT=%.8i %.8u %.7a %.14j %.3t %9r %19S %.10M %.10L %.5D %.4

C
CXX=CC
PE_TPSL_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/tpsl/18.06.1/

@PRGENV@/@PE_TPSL_DEFAULT_GENCOMPS@/@PE_TPSL_DEFAULT_TARGET@/lib
/pkgconfig

PE_TPSL_DEFAULT_GENCOMPILERS_INTEL_x86_skylake=16.0
PE_TPSL_64_DEFAULT_GENCOMPILERS_CRAY_mic_knl=8.6
PE_HDF5_DEFAULT_FIXED_PRGENV=CRAY PGI INTEL
CRAY_PMI_POST_LINK_OPTS=-L/opt/cray/pe/pmi/5.0.14/lib64
APP2_STATE=7.0.3
PE_MPICH_PKGCONFIG_LIBS=mpich
CRAY_MPICH2_VER=7.7.2
HISTCONTROL=erasedups:ignorespace
PE_PARALLEL_NETCDF_DEFAULT_FIXED_PRGENV=CRAY PGI INTEL
PE_NETCDF_DEFAULT_FIXED_PRGENV=CRAY PGI INTEL
PE_MPICH_ALTERNATE_LIBS_multithreaded=_mt
PE_LIBSCI_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/libsci/18.07.1/

@PRGENV@/@PE_LIBSCI_GENCOMPS@/@PE_LIBSCI_TARGET@/lib/pkgconfig
PE_LIBSCI_ACC_DEFAULT_GENCOMPS_GNU_x86_64=49
PE_GA_DEFAULT_GENCOMPILERS_GNU=5.3 4.9
CUDATOOLKIT_HOME=/opt/nvidia/cudatoolkit9.1/9.1.85_3.18-6.0.7.0_5.1

__g2eb7c52
PE_TPSL_64_DEFAULT_GENCOMPS_GNU_haswell=71 53 49
PE_PKGCONFIG_PRODUCTS_DEFAULT=PE_PAPI
PE_NETCDF_HDF5PARALLEL_DEFAULT_VOLATILE_PRGENV=GNU
PE_MPICH_TARGET_VAR_nvidia35=-lcudart
PE_HDF5_PARALLEL_DEFAULT_VOLATILE_PRGENV=GNU
CRAY_LIBSCI_VERSION=18.07.1
QT_SYSTEM_DIR=/usr/share/desktop-data
JDK_HOME=/usr/lib64/jvm/java
SHLVL=3
PE_TPSL_DEFAULT_GENCOMPILERS_INTEL_interlagos=16.0
LESS_ADVANCED_PREPROCESSOR=no
OSTYPE=linux
PE_TPSL_DEFAULT_VOLATILE_PRGENV=CRAY CRAY64 GNU GNU64 INTEL INTEL64
PE_PETSC_DEFAULT_GENCOMPILERS_CRAY_interlagos=8.6
PE_MPICH_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/mpt/7.7.2/gni/

mpich-@PRGENV@@PE_MPICH_DEFAULT_DIR_DEFAULT64@/
@PE_MPICH_DEFAULT_GENCOMPS@/lib/pkgconfig

PE_LIBSCI_ACC_DEFAULT_NV_SUFFIX_nvidia60=nv60
PE_TPSL_DEFAULT_GENCOMPS_INTEL_sandybridge=160
PE_TPSL_64_DEFAULT_GENCOMPS_CRAY_interlagos=86
CRAY_PMI_INCLUDE_OPTS=-I/opt/cray/pe/pmi/5.0.14/include
LS_OPTIONS=-N --color=none -T 0
XCURSOR_THEME=DMZ
SLURM_JOB_CPUS_PER_NODE=24
SLURM_CLUSTER_NAME=daint
CRAY_CUDATOOLKIT_INCLUDE_OPTS=-I/opt/nvidia/cudatoolkit9.1/9.1.85_3

.18-6.0.7.0_5.1__g2eb7c52/include -I/opt/nvidia/cudatoolkit9

.1/9.1.85_3.18-6.0.7.0_5.1__g2eb7c52/extras/CUPTI/include -I/opt
/nvidia/cudatoolkit9.1/9.1.85_3.18-6.0.7.0_5.1__g2eb7c52/extras/
Debugger/include

CRAY_CUDATOOLKIT_DIR=/opt/nvidia/cudatoolkit9.1/9.1.85_3.18-6.0.7.0_5
.1__g2eb7c52

PKG_CONFIG_PATH_DEFAULT=/opt/cray/pe/papi/5.6.0.2/lib64/pkgconfig
PE_TPSL_DEFAULT_GENCOMPILERS_CRAY_haswell=8.6
GCC_PATH=/opt/gcc/6.2.0
ATP_MRNET_COMM_PATH=/opt/cray/pe/atp/2.1.2/libexec/

atp_mrnet_commnode_wrapper
PE_MPICH_DIR_CRAY_DEFAULT64=64
CRAYPE_NETWORK_TARGET=aries
PRGENVMODULES=PrgEnv-cray:PrgEnv-gnu:PrgEnv-intel:PrgEnv-pathscale:

PrgEnv-pgi
WINDOWMANAGER=
PE_TPSL_DEFAULT_GENCOMPILERS_INTEL_sandybridge=16.0
PE_TPSL_DEFAULT_GENCOMPILERS_GNU_interlagos=7.1 5.3 4.9
PE_TPSL_64_DEFAULT_GENCOMPILERS_GNU_mic_knl=7.1 5.3
PE_PETSC_DEFAULT_GENCOMPILERS_GNU_haswell=7.1 5.3 4.9
SLURM_JOB_PARTITION=normal
PE_TRILINOS_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH:PE_HDF5_PARALLEL:

PE_NETCDF_HDF5PARALLEL:PE_LIBSCI:PE_TPSL
PE_TPSL_DEFAULT_GENCOMPS_GNU_x86_64=71 53 49
PE_TPSL_64_DEFAULT_GENCOMPILERS_INTEL_sandybridge=16.0
PE_TPSL_64_DEFAULT_GENCOMPILERS_GNU_haswell=7.1 5.3 4.9
PE_NETCDF_DEFAULT_REQUIRED_PRODUCTS=PE_HDF5
PE_MPICH_NV_LIBS=
PE_HDF5_DEFAULT_GENCOMPS_GNU=
CRAY_LIBSCI_PREFIX_DIR=/opt/cray/pe/libsci/18.07.1/GNU/6.1/x86_64
CRAY_GNI_HEADERS_INCLUDE_OPTS=-I/opt/cray/gni-headers

/5.0.12.0-6.0.7.1_3.11__g3b1768f.ari/include
PYTHONPATH=/apps/daint/UES/xalt/0.7.6/site:/apps/daint/UES/xalt

/0.7.6/libexec
G_FILENAME_ENCODING=@locale,UTF-8,ISO-8859-15,CP1252

LESS=-M -I -R
MACHTYPE=x86_64-suse-linux
PE_TRILINOS_DEFAULT_GENCOMPS_GNU_x86_64=71 53 49
PE_MPICH_DEFAULT_GENCOMPILERS_CRAY=8.6
PE_LIBSCI_OMP_REQUIRES=
DMAPP_ABORT_ON_ERROR=1
PE_MPICH_GENCOMPS_CRAY=86
PE_TPSL_DEFAULT_GENCOMPILERS_CRAY_sandybridge=8.6
PE_TPSL_64_DEFAULT_GENCOMPILERS_INTEL_interlagos=16.0
PE_MPICH_DEFAULT_GENCOMPS_GNU=71 51 49
PE_MPICH_DEFAULT_FIXED_PRGENV=INTEL
PE_LIBSCI_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH
PE_LIBSCI_ACC_DEFAULT_NV_SUFFIX_nvidia35=nv35
PE_LIBSCI_ACC_DEFAULT_GENCOMPILERS_CRAY_x86_64=8.5
DVS_INCLUDE_OPTS=-I/opt/cray/dvs/2.7_2.2.118-6.0.7.1_10.2__g58b37a2/

include
TOOLMODULES=apprentice:apprentice2:atp:chapel:cray-lgdb:craypat:

craypkg-gen:cray-snplauncher:ddt:gdb:iobuf:papi:perftools:
perftools-lite:stat:totalview:xt-craypat:xt-lgdb:xt-papi:xt-
totalview

XDG_DATA_DIRS=/usr/share
PE_TPSL_DEFAULT_GENCOMPILERS_GNU_sandybridge=7.1 5.3 4.9
PE_LIBSCI_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/libsci

/18.07.1/@PRGENV@/@PE_LIBSCI_DEFAULT_GENCOMPS@/
@PE_LIBSCI_DEFAULT_TARGET@/lib/pkgconfig

PE_GA_DEFAULT_FIXED_PRGENV=CRAY PGI INTEL
MODULESHOME=/opt/cray/pe/modules/3.2.10.6
SLURM_JOB_NUM_NODES=1
PE_PETSC_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/petsc/3.8.4.0/

complex/@PRGENV@/@PE_PETSC_DEFAULT_GENCOMPS@/
@PE_PETSC_DEFAULT_TARGET@/lib/pkgconfig

PE_MPICH_NV_LIBS_nvidia35=-lcudart
PELOCAL_PRGENV=true
SLURM_TIME_FORMAT=relative
PKG_CONFIG_PATH=/opt/nvidia/cudatoolkit9.1/9.1.85_3.18-6.0.7.0_5.1

__g2eb7c52/lib64/pkgconfig:/opt/cray/rca/2.2.18-6.0.7.1_5.47
__g2aa4f39.ari/lib64/pkgconfig:/opt/cray/alps/6.6.43-6.0.7.1_5
.45__ga796da32.ari/lib64/pkgconfig:/opt/cray/xpmem
/2.2.15-6.0.7.1_5.11__g7549d06.ari/lib64/pkgconfig:/opt/cray/gni
-headers/5.0.12.0-6.0.7.1_3.11__g3b1768f.ari/lib64/pkgconfig:/
opt/cray/dmapp/7.1.1-6.0.7.1_5.45__g5a674e0.ari/lib64/pkgconfig
:/opt/cray/pe/pmi/5.0.14/lib64/pkgconfig:/opt/cray/ugni
/6.0.14.0-6.0.7.1_3.13__gea11d3d.ari/lib64/pkgconfig:/opt/cray/
udreg/2.3.2-6.0.7.1_5.13__g5196236.ari/lib64/pkgconfig:/opt/cray
/pe/craype/2.5.15/pkg-config:/opt/cray/pe/iobuf/2.0.8/lib/
pkgconfig:/opt/slurm/17.11.12.cscs/lib64/pkgconfig:/opt/slurm/
default/lib64/pkgconfig:/opt/cray/pe/atp/2.1.2/lib/pkgconfig

LESSOPEN=lessopen.sh %s
PE_TPSL_64_DEFAULT_GENCOMPS_INTEL_x86_64=160
LIBSCI_BASE_DIR=/opt/cray/pe/libsci/18.07.1
CRAYPAT_OPTS_EXECUTABLE=sbin/pat-opts
PE_TPSL_DEFAULT_GENCOMPS_INTEL_mic_knl=160
PE_TPSL_64_DEFAULT_GENCOMPS_GNU_sandybridge=71 53 49
PE_MPICH_NV_LIBS_nvidia60=-lcudart
PE_LIBSCI_DEFAULT_PKGCONFIG_VARIABLES=

PE_LIBSCI_DEFAULT_OMP_REQUIRES_@openmp@:PE_SCI_EXT_LIBPATH:
PE_SCI_EXT_LIBNAME

LIBSCI_VERSION=18.07.1
INFOPATH=/opt/gcc/6.2.0/snos/share/info
CC=cc
PE_TPSL_64_DEFAULT_GENCOMPILERS_GNU_x86_64=7.1 5.3 4.9
PE_PGI_DEFAULT_FIXED_PKGCONFIG_PATH=/opt/cray/pe/parallel-netcdf

/1.8.1.3/PGI/15.3/lib/pkgconfig:/opt/cray/pe/netcdf-hdf5parallel
/4.6.1.2/PGI/17.10/lib/pkgconfig:/opt/cray/pe/netcdf/4.6.1.2/PGI
/17.10/lib/pkgconfig:/opt/cray/pe/hdf5-parallel/1.10.2.0/PGI
/17.10/lib/pkgconfig:/opt/cray/pe/hdf5/1.10.2.0/PGI/17.10/lib/
pkgconfig:/opt/cray/pe/ga/5.3.0.8/PGI/17.10/lib/pkgconfig

PE_LIBSCI_GENCOMPILERS_INTEL_x86_64=16.0
PE_FFTW_DEFAULT_TARGET_broadwell=broadwell
CRAY_ALPS_INCLUDE_OPTS=-I/opt/cray/alps/6.6.43-6.0.7.1_5.45

__ga796da32.ari/include
CRAY_CPU_TARGET=haswell
CRAY_PRE_COMPILE_OPTS=-hnetwork=aries
XDG_RUNTIME_DIR=/run/user/23600
XTPE_LINK_TYPE=dynamic
craype_already_loaded=0
PE_TPSL_64_DEFAULT_GENCOMPS_CRAY_x86_64=86
PE_PAPI_DEFAULT_ACCELL_FAMILY_LIBS=
PE_MPICH_DEFAULT_GENCOMPILERS_PGI=15.3
PE_LIBSCI_REQUIRED_PRODUCTS=PE_MPICH
CRAY_XPMEM_INCLUDE_OPTS=-I/opt/cray/xpmem/2.2.15-6.0.7.1_5.11

__g7549d06.ari/include
CRAY_UGNI_INCLUDE_OPTS=-I/opt/cray/ugni/6.0.14.0-6.0.7.1_3.13

__gea11d3d.ari/include
PE_MPICH_GENCOMPS_PGI=153
PE_TPSL_DEFAULT_GENCOMPS_INTEL_haswell=160
PE_LIBSCI_GENCOMPS_GNU_x86_64=71 61 51 49
PE_LIBSCI_DEFAULT_GENCOMPILERS_GNU_x86_64=7.1 6.1 5.1 4.9
PE_PETSC_DEFAULT_GENCOMPILERS_INTEL_x86_64=16.0
PE_FFTW_DEFAULT_TARGET_x86_64=x86_64
ATP_HOME=/opt/cray/pe/atp/2.1.2
LESSCLOSE=lessclose.sh %s %s
PE_TPSL_64_DEFAULT_GENCOMPILERS_INTEL_x86_skylake=16.0
PE_SMA_DEFAULT_DIR_PGI_DEFAULT64=64
PE_PETSC_DEFAULT_GENCOMPILERS_INTEL_haswell=16.0
PE_PETSC_DEFAULT_GENCOMPILERS_GNU_interlagos=7.1 5.3 4.9
PE_PAPI_DEFAULT_ACCEL_LIBS=
PE_INTEL_DEFAULT_FIXED_PKGCONFIG_PATH=/opt/cray/pe/parallel-netcdf

/1.8.1.3/INTEL/16.0/lib/pkgconfig:/opt/cray/pe/netcdf-
hdf5parallel/4.6.1.2/INTEL/16.0/lib/pkgconfig:/opt/cray/pe/

netcdf/4.6.1.2/INTEL/16.0/lib/pkgconfig:/opt/cray/pe/mpt/7.7.2/
gni/mpich-intel/16.0/lib/pkgconfig:/opt/cray/pe/hdf5-parallel
/1.10.2.0/INTEL/16.0/lib/pkgconfig:/opt/cray/pe/hdf5/1.10.2.0/
INTEL/16.0/lib/pkgconfig:/opt/cray/pe/ga/5.3.0.8/INTEL/18.0/lib/
pkgconfig

PE_GA_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/ga/5.3.0.8/
@PRGENV@/@PE_GA_DEFAULT_GENCOMPS@/lib/pkgconfig

PE_GA_DEFAULT_GENCOMPS_GNU=53 49
PE_FFTW_DEFAULT_TARGET_haswell=haswell
CRAY_LD_LIBRARY_PATH=/opt/nvidia/cudatoolkit9.1/9.1.85_3.18-6.0.7.0_5

.1__g2eb7c52/lib64:/opt/nvidia/cudatoolkit9.1/9.1.85_3

.18-6.0.7.0_5.1__g2eb7c52/extras/CUPTI/lib64:/opt/cray/pe/
perftools/7.0.3/lib64:/opt/cray/rca/2.2.18-6.0.7.1_5.47
__g2aa4f39.ari/lib64:/opt/cray/alps/6.6.43-6.0.7.1_5.45
__ga796da32.ari/lib64:/opt/cray/xpmem/2.2.15-6.0.7.1_5.11
__g7549d06.ari/lib64:/opt/cray/dmapp/7.1.1-6.0.7.1_5.45
__g5a674e0.ari/lib64:/opt/cray/pe/pmi/5.0.14/lib64:/opt/cray/
ugni/6.0.14.0-6.0.7.1_3.13__gea11d3d.ari/lib64:/opt/cray/udreg
/2.3.2-6.0.7.1_5.13__g5196236.ari/lib64:/opt/cray/pe/libsci
/18.07.1/GNU/6.1/x86_64/lib:/opt/cray/pe/mpt/7.7.2/gni/mpich-gnu
/7.1/lib

G_BROKEN_FILENAMES=1
SLURM_MEM_PER_NODE=61000
PE_PETSC_DEFAULT_GENCOMPS_INTEL_x86_64=160
PE_PETSC_DEFAULT_GENCOMPS_GNU_x86_64=71 53 49
PE_PETSC_DEFAULT_GENCOMPS_CRAY_haswell=86
PE_MPICH_DEFAULT_DIR_CRAY_DEFAULT64=64
JAVA_ROOT=/usr/lib64/jvm/java
COLORTERM=1
BASH_FUNC_module%%=() { eval ‘/opt/cray/pe/modules/3.2.10.6/bin/

modulecmd bash $*‘
}
+ lsb_release -a
LSB Version: n/a
Distributor ID: SUSE
Description: SUSE Linux Enterprise Server 12 SP3
Release: 12.3
Codename: n/a
+ uname -a
Linux daint105 4.4.162-94.72-default #1 SMP Mon Nov 12 18:57:45 UTC

2018 (9de753f) x86_64 x86_64 x86_64 GNU/Linux
+ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 20
On-line CPU(s) list: 0-19
Thread(s) per core: 1
Core(s) per socket: 10
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 63
Model name: Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz
Stepping: 2
CPU MHz: 1200.025
CPU max MHz: 3000.0000
CPU min MHz: 1200.0000
BogoMIPS: 4600.15
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 25600K
NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18
NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep

mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2
ss ht tm pbe syscall nx pdpe1gb rdtscp lm ibrs flush_l1d
constant_tsc arch_perfmon pebs bts rep_good nopl xtopology
nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor
ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca
sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave
avx f16c rdrand lahf_lm abm ida arat epb invpcid_single pln pts
dtherm ssbd ibpb stibp kaiser tpr_shadow vnmi flexpriority ept
vpid fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm
xsaveopt cqm_llc cqm_occup_llc

+ cat /proc/meminfo
MemTotal: 263274152 kB
MemFree: 86758608 kB
MemAvailable: 187873960 kB
Buffers: 2570964 kB
Cached: 134770224 kB
SwapCached: 0 kB
Active: 9569164 kB
Inactive: 128684260 kB
Active(anon): 935828 kB
Inactive(anon): 7048 kB
Active(file): 8633336 kB
Inactive(file): 128677212 kB
Unevictable: 15728720 kB
Mlocked: 15728720 kB
SwapTotal: 134217724 kB
SwapFree: 134217724 kB
Dirty: 980 kB
Writeback: 112 kB
AnonPages: 16641048 kB
Mapped: 1161008 kB
Shmem: 30600 kB

Slab: 19340680 kB
SReclaimable: 1339944 kB
SUnreclaim: 18000736 kB
KernelStack: 23648 kB
PageTables: 83928 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 265854800 kB
Committed_AS: 18191864 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 0 kB
VmallocChunk: 0 kB
HardwareCorrupted: 0 kB
AnonHugePages: 15501312 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 11571956 kB
DirectMap2M: 234747904 kB
DirectMap1G: 24117248 kB
+ inxi -F -c0
./collect_environment.sh: line 14: inxi: command not found
+ lsblk -a
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 2.6G 0 loop
loop1 7:1 0 34.7G 0 loop /var/opt/cray/imps-image-binding/PE/

squash_mounts/squashfs_vSpo3d_mount_point
loop2 7:2 0 1 loop
loop3 7:3 0 0 loop
loop4 7:4 0 0 loop
loop5 7:5 0 0 loop
loop6 7:6 0 0 loop
loop7 7:7 0 0 loop
sda 8:0 0 700G 0 disk

s d a 1 8:1 0 1007K 0 part
s d a 2 8:2 0 2G 0 part /boot
s d a 3 8:3 0 20G 0 part
s d a 4 8:4 0 256G 0 part /tmp
s d a 5 8:5 0 128G 0 part [SWAP]

sdb 8:16 0 1.5T 0 disk
s d b 1 8:17 0 10G 0 part /var/crash
s d b 2 8:18 0 2G 0 part /var/mmfs
s d b 3 8:19 0 1.5T 0 part /var/opt/cray/persistent

sr0 11:0 1 1024M 0 rom
+ lsscsi -s
[0:2:0:0] disk DELL PERC H730 Mini 4.29 /dev/sda 751

GB
[0:2:1:0] disk DELL PERC H730 Mini 4.29 /dev/sdb 1.64

TB
[10:0:0:0] cd/dvd HL-DT-ST DVD+-RW GTA0N A3B0 /dev/sr0

-
+ module list
++ /opt/cray/pe/modules/3.2.10.6/bin/modulecmd bash list
Currently Loaded Modulefiles:

1) modules/3.2.10.6
2) cray-mpich/7.7.2
3) slurm/17.11.12.cscs-1
4) xalt/daint-2016.11
5) daint-gpu
6) gcc/6.2.0
7) craype-haswell
8) craype-network-aries
9) craype/2.5.15

10) cray-libsci/18.07.1
11) udreg/2.3.2-6.0.7.1_5.13__g5196236.ari
12) ugni/6.0.14.0-6.0.7.1_3.13__gea11d3d.ari
13) pmi/5.0.14
14) dmapp/7.1.1-6.0.7.1_5.45__g5a674e0.ari
15) gni-headers/5.0.12.0-6.0.7.1_3.11__g3b1768f.ari
16) xpmem/2.2.15-6.0.7.1_5.11__g7549d06.ari
17) job/2.2.3-6.0.7.1_5.43__g6c4e934.ari
18) dvs/2.7_2.2.118-6.0.7.1_10.2__g58b37a2
19) alps/6.6.43-6.0.7.1_5.45__ga796da32.ari
20) rca/2.2.18-6.0.7.1_5.47__g2aa4f39.ari
21) atp/2.1.2
22) perftools-base/7.0.3
23) PrgEnv-gnu/6.0.4
24) cudatoolkit/9.1.85_3.18-6.0.7.0_5.1__g2eb7c52

	Introduction
	Pygion Programming Interface
	Lowering Pygion to Legion
	Tracking Regions and Privileges
	Accessors
	Calling Convention
	Automatic Memory Management

	Optimizations
	Index Launches
	Futures
	Mapping
	Optimizations Performed Externally
	Optimizations No Longer Necessary
	Optimizations Not Performed

	Evaluation
	Related Work
	Conclusion
	References
	Appendix A: Artifact Description

