
Speaking Pygion: Experiences Writing an
Exascale Single Particle Imaging Code

Seema Mirchandaney1, Alex Aiken1,2, and Elliott Slaughter1

1 SLAC National Accelerator Laboratory
2 Stanford University

Abstract. The goal of the SpiniFEL project was to write, from scratch,
a single particle imaging code for exascale supercomputers. The original
vision was to have two versions of the code, one in MPI and one in Pygion,
a Python-based interface to the Legion task-based runtime. We describe
the motivation for the project, some of the programming challenges we
encountered along the way, what worked and what didn’t, and why only
the Pygion code eventually succeeded in running at scale.

Keywords: task-based programming · exascale computing · single par-
ticle imaging.

1 Introduction

The ExaFEL project had as its goal to develop scalable and rapid approaches
to the analysis of images produced by LCLS-II, the second generation free elec-
tron laser at the SLAC National Accelerator Laboratory. One component of the
project was to develop a single particle imaging (SPI) code that could make
use of the DOE’s exascale supercomputers to perform reconstruction of 3D con-
formations of molecules from the 2D diffraction patterns generated by SPI ex-
periments. By exploiting large numbers of GPU’s, reconstructions that would
normally take hours or days could be computed in minutes, allowing scientists
to adjust their experiments based on near real-time feedback from shots of the
laser.

From the start of the development of SpiniFEL, the plan was to implement
a version targeting the Legion task-based runtime [2], but to mitigate risk it
was decided that an equivalent MPI version should also be written since most
of the team had experience with MPI, no experience with Legion, and Legion
had not been previously demonstrated on any similar application. The decision
to develop two versions led, in retrospect, to some predictable difficulties for
the project. The MPI code received more attention and development effort,
and as a result the Legion version was perpetually behind: features would first
appear in the MPI code and only later be ported to Legion. Second, because
developing two completely independent implementations was impractical, the
two versions shared as much code as possible. Because features were supported
in MPI first, the realization of features tended to be idiomatic for MPI, making it
more difficult than necessary to take advantage of Legion’s task-based features.

2 Seema Mirchandaney, Alex Aiken, and Elliott Slaughter

Another issue, however, proved to be the most important: SpiniFEL would
be developed in Python, and when the project started Legion support for Python
was minimal. At the time (2017), Legion had two well-supported programming
interfaces, the API for Legion’s C++ runtime system [2], and Regent, a program-
ming language for the Legion programming model [10]. Regent had a number of
advantages over programming directly to the C++ API, including compiler sup-
port for statically checking that the programming model is used correctly and a
number of important optimizations. However, like Legion’s C++ API, Regent’s
support for inter-operation with Python was primitive. Motivated by SpiniFEL,
we developed Pygion, a native Python interface to Legion based on Regent [9].

Initially development of SpiniFEL focused on a batch computation that took
a set of 2D diffraction patterns and reconstructed a single conformation. Once
that essential functionality was implemented, the focus shifted to adding two
significant extensions. The first was real-time processing of diffraction images
using Psana2 [6], an infrastructure for managing images arriving directly from
the X-ray laser, and the second was reconstructing multiple conformations from
a single experiment—a single LCLS-II experiment consists of images of many
different molecules, and so it is natural to identify multiple conformations.

Implementing these extensions was a turning point in the project: It was more
difficult and time-consuming to modify the MPI code to support these features
than it was to modify the Pygion version, in part because the extensions were
less friendly to an SPMD-style program, but mainly because Pygion’s flexibility,
automatic discovery of dependencies and support for data partitioning proved
to be significantly more productive to use when restructuring existing code.
Eventually the Pygion version scaled and performed well with these additional
features, while neither feature was fully implemented in MPI at the end of the
project.

In this paper we give additional details of the development of SpiniFEL,
focusing on the Pygion/Legion features used to support computing multiple
conformations. After discussing related work in Section 2, we briefly describe
the initial SPI parallel algorithm for single conformations and its extension to
multiple conformations in Section 3. We then elaborate on the features of Pygion
that simplified the restructuring of the code to go from computing single to
computing multiple conformations in Section 4. Results from and the scaling
performance of the Pygion version of SpiniFEL are in Section 5.

2 Related Work

The productivity benefits described in this paper were sufficiently significant
that, while the details might be quite different, we would not be surprised if
other task-based systems could provide similar benefits when developing a code
in both MPI and the task-based framework. We briefly discuss five systems,
two where we expect that the experience could be similar and three where we
speculate that the experience could be very different.

Speaking Pygion 3

StarPU [1] provides asynchronous tasking, automatic discovery of dependen-
cies, and data partitioning built into the task programming model, three features
that we highlight as having been particularly important in this work. StarPU
has also recently added a Python interface. We note that the Pygion interface is
at a somewhat higher level than StarPU’s, as the Pygion implementation (dy-
namically) performs many of the optimizations done by the Regent (statically
compiled) language for Legion, but we expect that any reasonable Python inter-
face would be sufficient to realize an application such as SpiniFEL in StarPU.

PaRSEC [4] is another tasking system with asynchronous tasks, automatic
discovery of dependencies, and a data partitioning subsystem, and so is another
system that we would expect to experience similar benefits in relationship to MPI
for a project of the scale of SpiniFEL. To the best of our knowledge, PaRSEC
does not currently have a Python interface.

DASK is a native Python-based tasking system, built from the start to seam-
lessly integrate distributed tasking into Python and its ecosystem. DASK’s main
drawback is performance; the runtime system is centralized and also imple-
mented in Python. The resulting high overheads per task [11] and inefficiencies
in distributing work on a very large cluster would likely make implementing
SpiniFEL efficiently in DASK challenging.

Charm++ [7] is an actor-based programming model; instead of having state-
less tasks Charm++ relies on stateful actors called chares as its core building
block. Chares execute methods in response to messages sent from other chares.
In general the order of execution of the methods of a chare is non-deterministic
which, combined with chares’ internal updateable state, means that Charm++
programs are potentially non-deterministic in their visible behavior. The task-
based systems, on the other hand, provide parallel execution with deterministic
sequential semantics. Thus, it is not clear what lessons from the experience
described in this paper would apply to Charm++. At the least, in our view
the difficulty of debugging significant changes to explicitly parallel MPI code
compared to debugging the more straightforward deterministic semantics of Py-
gion programs contributed to Pygion’s greater productivity in writing SpiniFEL.
Charm++ has extensive Python support through its charm4py library.

Ray, like DASK, is a native Python tasking library. Ray provides both pure
tasks and actors [8]. Ray’s overheads are similar to DASK, and so we would
expect similar issues in supporting fine-grain tasks, and exploiting Ray’s actors
would likely be comparable to the experience of using Charm++.

3 SpiniFEL

The parallel algorithm for computing a single conformation is described in [3,
5] and was implemented in both MPI and Pygion. A number of phases are per-
formed iteratively until either convergence or the maximum number of iterations
is reached. Throughout the computation a current estimate of the 3D electron
density is maintained and improved by the algorithm. The phases are:

4 Seema Mirchandaney, Alex Aiken, and Elliott Slaughter

– Slicing computes 2D images (slices) through the current electron density
estimate.

– Orientation matching compares the actual 2D diffraction patterns from an
SPI experiment to the slices, which is used to compute the orientation of the
images using a closest Euclidean distance metric.

– Merging computes a non-uniform fast Fourier transform (NUFFT) of the
autocorrelation of the electron density. This step produces a new estimate
of the electron density.

– Phasing converts the 3D diffraction volume into a molecular structure, which
is used to refine the electron density computed in the merging phase.

The parallel algorithm that supports multiple conformations reuses the com-
ponents of the single conformation algorithm but rearranges them in ways that
result in a very different overall structure. There is an additional level of par-
allelism, as each of the phases is now carried out for each of several conforma-
tions, and there are two additional phases, one to cluster the diffraction patterns
by conformation and one to detect when a conformation has converged. The
changes also result in new communication patterns between and within some of
the phases. Specifically:

– Slicing is done per conformation.
– Orientation matching compares each of the 2D diffraction patterns from SPI

to the model slices for every conformation and the closest Euclidean distance
is computed.

– Conformation assigns each 2D diffraction pattern to a conformation based
on the minimum Euclidean distance obtained across all conformations.

– Merging and Phasing compute and refine a new electron density estimate for
each conformation.

– If enabled, Convergence determines whether each conformation has con-
verged and its resolution. The results are used to determine which confor-
mations should continue to the next iteration—converged conformations are
removed from the computation.

4 Pygion Implementation

Once the single conformation algorithm was implemented in MPI and Pygion
the project began working towards the multiple conformation algorithm. The
multiple conformation algorithm described in Section 3 is the end result of an
iterative process in which many variations were explored, each of which required
time to code and test. This iterative process progressed much more quickly with
the Pygion version than with the MPI version for two primary reasons.

First, many changes to the code involved adding or removing tasks, which
are just distinguished functions that can be executed asynchronously. In Py-
gion, calling a new task simply meant writing that task and adding it in the
appropriate place in the sequential execution order. The Legion runtime that
underlies Pygion performs a dependence analysis that automatically preserves

Speaking Pygion 5

sequential execution semantics while extracting parallelism and also inserts all
needed communication and synchronization between tasks. Thus adding (or re-
moving) a task is a local program change in Pygion—even though a task addition
(or removal) can have global effects on the dependence graph of tasks, the de-
pendency information is computed by Pygion and is not the responsibility of
the programmer. In the MPI version, however, adding (or removing) a task in-
volves more than the task call itself. Because the programmer is responsible for
synchronization and communication in MPI, the programmer must manually de-
termine how the synchronization and communication by other parts of the code
must be modified to ensure correctness in light of the insertion or removal of a
task, which in general can require global changes to the program.

Second, code changes often required creating new data structures, partition-
ing data in new ways, or both. Pygion has first-class support for regions (data
collections) and for partitioning and distributing regions across the machine. In
SpiniFEL a region of all the 2D diffraction patterns is partitioned into n subre-
gions, where n is the number of ranks (the number of GPUs used in the computa-
tion). Pygion/Legion also allows multiple different partitions of the same region
to exist and be used simultaneously. Another partitioning of the 2D diffraction
patterns, for example, keeps track of which conformation each image belongs
to. The conformation phase may update an image’s assigned conformation each
iteration; any updates are tracked automatically by Legion and when a merging
task needs the images associated with a particular conformation the correct set
of images is delivered to the task by the runtime system, reflecting all of the
changes up to that point in the computation.

Pygion/Legion’s built-in support for regions and partitioning means that
adding a new kind of data collection or a new partitioning of an existing collec-
tion is also always a local change to the program, even though the communica-
tion pattern of the program may change globally through the new dependencies
implied by changing or adding partitions. As with adding tasks, adding new
regions or partitions in the MPI version requires that explicit synchronization
and communication be added for each of those new dependencies, as it is the
programmer’s job, not MPI’s, to communicate changes to data structures.

Note that partitioning in Legion is a dynamic operation: partitions are com-
puted at runtime, and regions can be re-partitioned on the fly. In SpiniFEL
dynamically creating new regions and partitions was important for integrating
with Psana2, because Psana2 delivers the diffraction images periodically as the
images arrive from the laser’s data-gathering detectors. We use the ability to
define regions and partitions dynamically to add new 2D diffraction patterns
during each iteration—specifically a new region is created by taking the union
of a region of the new images with the existing image region.

Figure 1 gives an excerpt from the merging phase of SpiniFEL. Shown are
two index launches, loops that launch sets of tasks distinguished by an index i.
The solve_simple_adjoint tasks each take three regions (among others that
are elided): slices_p[i], ugrid, and uvect; for each solve_simple_adjoint
task there is a corresponding solve_simple_linear task in the second index

6 Seema Mirchandaney, Alex Aiken, and Elliott Slaughter

. . .
f o r i in IndexLaunch (N_procs) :

so lve_simple_adjo int (. . . , s l i c e s_p [i] , ugrid , uvect , . . .)
f o r i in IndexLaunch (N_procs) :

so lve_s imple_l inear (. . . , s l i c e s_p [i] , ugrid , uvect , . . .)
. . .

Fig. 1. An excerpt from SpiniFEL’s merging phase.

launch that takes the same arguments. Not shown are how the tasks use these
regions: the solve_simple_adjoint tasks read their set of slices and perform
reductions into the ugrid and uvect regions, while the solve_simple_linear
tasks only read form these regions. Note that there is no explicit parallelism or
communication—Legion automatically discovers which tasks can run in parallel
and where communication is needed. Adding, removing, or modifying a task to
take different arguments are always local changes, regardless of the (potentially
large) effect on the program’s communication pattern.

(a) Example input diffraction patterns (b) Open and closed conformations

Fig. 2. Input and output of SpiniFEL

5 Results

We obtained results for 4096 ranks (GPUs) on the Frontier supercomputer at
Oak Ridge National Laboratory. This experiment computed two conformations
of Mm-cpn (the molecule methancoccous maripaludis chaperonin): 3IYF (open)
and 3J03 (closed). Figure 2(a) shows examples of some of the input diffraction
patterns, while Figure 2(b) shows the output conformations; the images labeled
(A) are two views of the 3D electron density structure in the open state, while
(B) shows the closed state after 20 iterations.

Speaking Pygion 7

Weak scaling results for 256 images per rank and 20 iterations on Frontier
are shown in Figure 3. SpiniFEL achieves almost perfect weak scaling to 2000
ranks, after which the communication between some of the phases begins to be
exposed, resulting in about 70% parallel efficiency at 4000 ranks.

Fig. 3. Weak scaling results

We also tested convergence for both conformations. The table below gives
the results for 16,384 images for 30 iterations. In the table gen refers to the
number of generations (iterations) until convergence, resolution is in angstroms,
and corr. coeff. is the final correlation coefficient of the the electron density map.

ranks images/rank 3iyf 3j03
gen resolution corr. coeff. gen resolution corr. coeff.

128 128 18 16.4 0.837 13 13.3 0.835
256 64 14 18.09 0.806 17 13.0 0.834

We cannot compare the Pygion code with MPI on multiple conformations
because there is no MPI implementation. The single conformation MPI code is
50% slower than the corresponding Pygion code, primarily because Pygion han-
dles the merging phase better [5]. In principle the MPI version could reproduce
the performance of Pygion, but as discussed it would require more effort due to
the need to make all communication and synchronization explicit.

6 Conclusion

Using Pygion we implemented SpiniFEL, a scalable, parallel code to recon-
struct multiple molecular conformations from single particle imaging experi-
ments. When the code reached sufficient complexity, the time and effort to add
new features to a task-based code turned out to be much less than modifying an
MPI code, primarily because the implicit parallelism of the task-based system
made most changes local (only a small part of the program needed to be changed)
in contrast to the MPI version, where often considerable effort was needed to
express changes in the communication/dependency structure with numerous,
non-local additions of MPI communications and synchronization.

Acknowledgments. This research was supported by the Exascale Computing Project
(17- SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Sci-
ence and the National Nuclear Security Administration. This research used resources of

8 Seema Mirchandaney, Alex Aiken, and Elliott Slaughter

the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

Disclosure of Interests. The authors have no competing interests for this publica-
tion.

References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: A unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience 23, 187–198 (Feb 2011)

2. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: Expressing locality and
independence with logical regions. In: High Performance Computing, Networking,
Storage and Analysis (SC) (2012)

3. Blaschke, J., Mirchandaney, S., Yoon, C., Slaughter, E., Uerviroj-
nangkoorn, M., Chang, I., Dujardin, A., Kommera, P., Ramakrishnaiah,
V.B., Sweeney, C.: MTIP single particle imaging (SpiniFEL) (Oct 2021),
https://www.osti.gov//servlets/purl/1834376

4. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Hérault, T., Dongarra, J.J.:
PaRSEC: Exploiting heterogeneity to enhance scalability. Computing in Science &
Engineering 15(6), 36–45 (2013)

5. Chang, H.Y., Slaughter, E., Mirchandaney, S., Donatelli, J., Yoon, C.H.: Scaling
and acceleration of three-dimensional structure determination for single-particle
imaging experiments with SpiniFEL. arXiv preprint arXiv:2109.05339 (2021)

6. Damiani, D., Dubrovin, M., Gaponenko, I., Kroeger, W., Lane, T., Mitra, A.,
O’Grady, C., Salnikov, A., Sanchez-Gonzalez, A., Schneider, D., et al.: Linac co-
herent light source data analysis using Psana. Journal of Applied Crystallography
49(2), 672–679 (2016)

7. Kalé, L.V., Krishnan, S.: CHARM++: A portable concurrent object oriented sys-
tem based on C++. In: OOPSLA. pp. 91–108 (1993)

8. Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol, M.,
Yang, Z., Paul, W., Jordan, M.I., et al.: Ray: A distributed framework for emerging
AI applications. In: 13th USENIX symposium on operating systems design and
implementation (OSDI 18). pp. 561–577 (2018)

9. Slaughter, E., Aiken, A.: Pygion: Flexible, scalable task-based parallelism with
Python. In: Proceedings of the Parallel Applications Workshop, Alternatives To
MPI. pp. 58–72. IEEE (2019)

10. Slaughter, E., Lee, W., Treichler, S., Bauer, M., Aiken, A.: Regent: A high-
productivity programming language for HPC with logical regions. In: High Perfor-
mance Computing, Networking, Storage and Analysis (SC) (2015)

11. Slaughter, E., Wu, W., Fu, Y., Brandenburg, L., Garcia, N., Kautz, W., Marx,
E., Morris, K.S., Cao, Q., Bosilca, G., Mirchandaney, S., Lee, W., Treichler, S.,
McCormick, P., Aiken, A.: Task Bench: A parameterized benchmark for evaluating
parallel runtime performance. In: Supercomputing (SC). pp. 1–15. IEEE (2020)

