
Programming with Legion

Alex Aiken Michael Bauer

January 01, 2023 (legion-22.12.0)

2

Preface

The first paper describing the Legion programming model was published
in 2012 [BTSA12]. Since then, there has been enormous progress and
many people have contributed to the project. Throughout this period
new application developers have learned Legion through a combination of
examples, lore from other members of the project, research papers and
reading the source code of the Legion implementation. The intention here is
to put down in a systematic fashion what a programmer who wants to use
Legion to develop high performance applications needs to know.

This book is intended to be a combination tutorial, rationale and manual.
The first part is the tutorial and rationale, laying out in some detail what
Legion is and why it is that way. The second part is the manual, which
describes each of the API calls for the Legion C++ runtime.

The example programs and configuration files referred to in this book
can be found in the directory Examples/ included in the Legion distribution.

This book is incomplete and will remain incomplete for some time to
come. But on the theory that partial documentation is better than no
documentation, the manual is being made available while it is still in progress
in the hope that it will be useful to new Legion programmers. Please report
any errors or other issues to aiken@cs.stanford.edu.

Alex Aiken
Stanford, CA
September 2022

Contents

Preface . 2

I Legion Runtime Tutorial 5

1 Installation 7
1.1 Regent . 7

2 Tasks 9
2.1 Subtasks . 12
2.2 Futures . 16
2.3 Points, Rectangles and Domains 17
2.4 Index Launches . 19

3 Regions 23
3.1 Physical Instances, Region Requirements, Privileges and Ac-

cessors . 25
3.2 Fill Fields . 28
3.3 Inline Launchers . 29
3.4 Layout Constraints . 30

4 Partitioning 33
4.1 Equal Partitions . 34
4.2 Partition by Field . 36
4.3 Partition by Restriction . 37
4.4 Set-Based Partitions . 39
4.5 Image Partitions . 41
4.6 Pre-Image Partitions . 44

5 Control Replication 49

3

4 CONTENTS

6 Coherence 53
6.1 Atomic . 53
6.2 Simultaneous . 55

6.2.1 Simple Cases of Simultaneous Coherence 60
6.3 Relaxed . 61

7 Mapping 63
7.1 Mapper Organization . 64

7.1.1 Mapper Registration 65
7.1.2 Synchronization Model 67
7.1.3 Machine Interface . 68

7.2 Mapping Tasks . 69
7.2.1 Controlling Task Mapping 69
7.2.2 Sharding . 72
7.2.3 Slicing . 72
7.2.4 Selecting Tasks to Map 74
7.2.5 Map_Task . 74
7.2.6 Creating Physical Instances 76
7.2.7 Selecting Sources for New Physical Instances 77
7.2.8 Postmapping . 78
7.2.9 Using Virtual Mappings 78

7.3 Other Mapping Features . 79
7.3.1 Profiling Requests . 79
7.3.2 Mapping Acquires and Releases 79
7.3.3 Controlling Stealing 80

7.4 Mappers Included with Legion 81

8 Interoperation 83
8.1 MPI . 83
8.2 OpenMP . 85
8.3 HDF5 . 86
8.4 Kokkos . 87
8.5 Python . 89

Part I

Legion Runtime Tutorial

5

Chapter 1

Installation

The Legion homepage is https://legion.stanford.edu. Here you will
find links to everything associated with the project, including a set of
tutorials that are distinct from this manual. The Legion distribution is at
https://github.com/StanfordLegion/legion. The distribution has been
tested on Linux and macOS. To install, in a shell type

> cd DIR
> g i t c l one https : // github . com/ StanfordLeg ion / l e g i o n

where DIR is a directory of your choice. This command creates the directory
DIR/legion. To complete the installation, set the environment variable
LG_RT_DIR to DIR/legion/runtime. For bash users, an example .bashrc
is included in Examples/Installation.

1.1 Regent
Regent is the companion programming language for Legion. Regent provides
the same programming model as the Legion C++ API, but with a nicer
syntax, static checking of various requirements of Legion programs, and
compile-time optimizations. Instructions for installing Regent are maintained
at https://regent-lang.org/install.

7

https://legion.stanford.edu
https://github.com/StanfordLegion/legion
https://regent-lang.org/install

8 CHAPTER 1. INSTALLATION

Chapter 2

Tasks

The Legion runtime is a C++ library, and Legion programs are just C++
programs that use the Legion runtime API. One important consequence of
this design is that almost all Legion decisions (such as what data layout
to use, in which memories to place data and on which processors to run
computations) are made dynamically, during the execution of a Legion
application. Dynamic decision making provides maximum flexibility, allowing
the runtime’s decisions to be reactive to the current state of the computation.
Implementing Legion as a C++ library also allows high performance C++
code (e.g., vectorized kernels) to be used seamlessly in Legion applications.

In Legion, tasks are distinguished functions with a specific signature.
Legion tasks have several important properties:

• Tasks are the unit of parallelism in Legion; all parallelism occurs
because tasks are executed in parallel.

• Tasks have variants specific to a particular kind of processor (most
commonly CPUs or GPUs, but there is also experimental support for
FPGAs) and memory layout of the task’s arguments. A task may have
multiple variants.

• Once a task begins execution on a processor, that task will execute in
its entirety on that processor—tasks do not migrate mid-computation.

Figure 2.1 shows a very simple, but complete, Legion program for sum-
ming the first 1000 positive integers (also available as sum.cc in Examples/Tasks).
This example, like every other example in this manual, can be run by first
setting an environment variable to point to the Legion runtime

export LG_RT_DIR="...path to legion directory.../legion/runtime"

9

10 CHAPTER 2. TASKS

1 include <cstdio>include "legion.h"
2
3 using namespace Legion;
4
5 // All tasks must have a unique task id (a small integer).
6 // A global enum is a convenient way to assign task ids.
7 enum TaskID {
8 SUM_ID,
9 };

10
11 void sum_task(const Task ∗task,
12 const std::vector⟨PhysicalRegion⟩ ®ions,
13 Context ctx, Runtime ∗runtime)
14 {
15 int sum = 0;
16 for (int i = 0; i ⟨= 1000; i++) {
17 sum += i;
18 }
19 printf("The␣sum␣of␣0..1000␣is␣%d\n", sum);
20 }
21
22 int main(int argc, char ∗∗argv)
23 {
24 Runtime::set_top_level_task_id(SUM_ID);
25 {
26 TaskVariantRegistrar registrar(SUM_ID, "sum");
27 registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
28 Runtime::preregister_task_variant⟨sum_task⟩(registrar);
29 }
30 return Runtime::start(argc, argv);
31 }

Figure 2.1: Examples/Tasks/sum/sum.cc

11

and then typing make in the directory containing the example.
At a high level, every Legion program has three components:

• The id of the top-level task must be set with Legion’s high level runtime.
The top-level task is the initial task that is called when the Legion
runtime starts.

• Every task and its task id must be registered with the high level runtime.
Currently all tasks must be registered before the runtime starts.

• The start method of the high level runtime is invoked, which in turn calls
the top-level task. Note that by default this call does not return—the
program is terminated when the start method terminates.

In Figure 2.1, these three steps are the three statements of main. The only
task in this program is sum_task, which is also the top-level task invoked
when the Legion runtime starts up. Note that the program does not say
where the task is executed; that decision is made at runtime by the mapper
(see Chapter 7). Note also that tasks can perform almost arbitrary C++
computations. In the case of sum_task, the computation performed is very
simple, but in general tasks can call ordinary C++ functions, including
allocating and deallocating memory. Tasks must not, however, call directly
into other packages that provide parallelism or concurrency. Interoperation
with OpenMP and MPI is possible but must be done in a standardized way
(see Chapter 8).

As mentioned above, every task must be registered with the Legion
runtime before the runtime’s start method is called. Registration passes
several arguments about a task to the runtime:

• The name of the task is a template argument to the register_legion_task
method.

• The task ID is the first (regular) argument.

• The kind of processor the task can run on is the second argument. The
most important options are latency optimized cores or CPUs (constant
LOC) and throughput optimized cores or GPUs (constant TOC). Declaring
the processor kind for a task is an example of a constraint. Legion
has an extensive system of constraints that can be used to direct the
Legion runtime in running a Legion program. There are other kinds of
constraints that can be specified for tasks, but the processor kind is
the most commonly used.

12 CHAPTER 2. TASKS

• Two boolean flags, the first of which indicates whether the task can be
used in a single task launch and the second of which indicates whether
the task can be used in a multiple (or index) task launch.

We will see shortly that tasks can call other tasks and pass those tasks
arguments and return results. Because the called task may be executed in
a different address space than the caller, arguments passed between tasks
must not contain C++ pointers, as these will not make sense outside of
the address space in which they were created. Neither should tasks refer
to global variables. A common programming error for beginning Legion
programmers is to pass C++ pointers or references between tasks, or to refer
to global variables from within tasks. As long as all the tasks are mapped to
a single node (i.e., the same address space) the program is likely to work,
but when efforts are made to scale up the application by running on multiple
nodes, C++ crashes result from the wild pointers or references to distinct
instances of global variables of the same name in different address spaces.
Legion provides its own abstractions for passing data structures between
tasks (see Chapter 3).

All tasks have the same input signature as sum_task:

• const Task *task: An object representing the task itself.

• const std::vector<PhysicalRegion> ®ions: A vector of physi-
cal region instances. This argument is the primary way to pass data
between tasks (see Chapter 3).

• Context ctx: Every task is called in a context, which contains meta-
data for the task. Application programs should not directly manipulate
the context.

• Runtime *runtime: A pointer to the runtime, which gives the task
access to the Legion runtime’s methods.

2.1 Subtasks
Task can call other tasks, known as subtasks. We also refer to the call-
ing task as the parent task and the called task as the child task. Two
or more child tasks of the same parent task are sibling tasks. Figure 2.2
shows the definition of the parent task and the child task from the example
Examples/Tasks/subtask/subtask.cc.

Consider the parent task top_level_task. There are two steps to execut-
ing a subtask. First, a TaskLauncher object is created. The TaskLauncher

2.1. SUBTASKS 13

1 include <cstdio>include "legion.h"
2
3 using namespace Legion;
4
5 // All tasks must have a unique task id (a small integer).
6 // A global enum is a convenient way to assign task ids.
7 enum TaskID {
8 TOP_LEVEL_TASK_ID,
9 SUBTASK_ID

10 };
11
12 void top_level_task(const Task ∗task,
13 const std::vector⟨PhysicalRegion⟩ ®ions,
14 Context ctx,
15 Runtime ∗runtime)
16 {
17 printf("Top␣level␣task␣start.\n");
18 for(int i = 1; i ⟨= 100; i++) {
19 TaskLauncher launcher(SUBTASK_ID, TaskArgument(&i,sizeof(int)));
20 runtime−⟩execute_task(ctx,launcher);
21 }
22 printf("Top␣level␣task␣ddone␣launching␣subtasks.\n");
23 }
24
25 void subtask(const Task ∗task,
26 const std::vector⟨PhysicalRegion⟩ ®ions,
27 Context ctx,
28 Runtime ∗runtime)
29 {
30 int subtask_number = ∗((int ∗) task−⟩args);
31 printf("\tSubtask␣%d\n", subtask_number);
32 }
33
34 int main(int argc, char ∗∗argv)
35 {
36 Runtime::set_top_level_task_id(TOP_LEVEL_TASK_ID);
37 {
38 TaskVariantRegistrar registrar(TOP_LEVEL_TASK_ID, "top_level_task");
39 registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
40 Runtime::preregister_task_variant⟨top_level_task⟩(registrar);
41 }
42 {
43 TaskVariantRegistrar registrar(SUBTASK_ID, "subtask");
44 registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
45 Runtime::preregister_task_variant⟨subtask⟩(registrar);
46 }
47 return Runtime::start(argc, argv);
48 }

Figure 2.2: Examples/Tasks/subtasks/subtasks.cc

14 CHAPTER 2. TASKS

constructor takes two arguments, the ID of the task to be called and a
TaskArgument object that holds a pointer to a buffer containing data for
the subtask together with the size of the buffer. The semantics of the task
arguments are particularly important. Recall that a task may be run on any
processor in the system (of a kind that can execute the task). Thus, the
parent task and the child task may run in different address spaces, and so
the arguments are passed by value, meaning that the buffer pointed to by
the TaskArgument is copied to where the subtask runs. Even if the subtask
happens to run in the same address space as the parent task, the buffer
referenced by the TaskArgument is passed by value (i.e., copied).

TaskArgument objects should be used to pass small amounts of data, such
as an integer, float, struct or a (very) small array. To pass large amounts of
data, use regions (see Chapter 3). As discussed earlier in this chapter, task
arguments may not contain C++ pointers or references. In addition, task
arguments may not contain futures (see Section 2.2).

A subtask is actually launched by the runtime->execute_task method,
which requires both the parent task’s context and the TaskLauncher object
for the subtask as arguments. Note that the argument buffer pointed to
by the TaskArgument is copied only when execute_task is called. On the
callee’s side, note that the task arguments are available as a field of the task
object. Since C++ doesn’t know the type of the buffer, it is necessary to
first cast the pointer to the buffer to the correct type before it can be used.

Finally, there are two other important properties of subtasks. First, the
execute_task method is non-blocking, meaning it returns immediately and
the subtask is executed asynchronously from the parent task, allowing the
parent task to continue executing while the subtask is running (potentially)
in parallel. In subtask.cc, the parent task launches all of the subtasks in
a loop, sending each subtask a unique integer argument that the subtask
simply prints out. Compile and run subtask.cc and observe that the parent
task reports that it is done launching all of the subtasks before all of the
subtasks execute. Second, a parent task does not terminate until all of its
child tasks have terminated. Thus, even though top_level_task reaches
the end of its function body before all of its child tasks have completed, at
that point the parent task waits until all the child tasks terminate, at which
point top_level_task itself terminates.

2.2. FUTURES 15

1 void top_level_task(const Task ∗task,
2 const std::vector⟨PhysicalRegion⟩ ®ions,
3 Context ctx,
4 Runtime ∗runtime)
5 {
6 printf("Top␣level␣task␣start.\n");
7 for(int i = 1; i ⟨= 100; i += 2) {
8 TaskLauncher producer_launcher(SUBTASK_PRODUCER_ID, TaskArgument(&i,sizeof(int)));
9 Future doubled_task_number = runtime−⟩execute_task(ctx,producer_launcher);

10 TaskLauncher consumer_launcher(SUBTASK_CONSUMER_ID, TaskArgument(NULL,0));
11 consumer_launcher.add_future(doubled_task_number);
12 runtime−⟩execute_task(ctx,consumer_launcher);
13 }
14 printf("Top␣level␣task␣done␣launching␣subtasks.\n");
15 }
16
17 int subtask_producer(const Task ∗task,
18 const std::vector⟨PhysicalRegion⟩ ®ions,
19 Context ctx,
20 Runtime ∗runtime)
21 {
22 int subtask_number = ∗((int ∗) task−⟩args);
23 printf("\tProducer␣subtask␣%d\n", subtask_number);
24 return subtask_number + 1;
25 }
26
27 void subtask_consumer(const Task ∗task,
28 const std::vector⟨PhysicalRegion⟩ ®ions,
29 Context ctx,
30 Runtime ∗runtime)
31 {
32 Future f = task−⟩futures[0];
33 int subtask_number = f.get_result⟨int⟩();
34 printf("\tConsumer␣subtask␣%d\n", subtask_number);
35 }

Figure 2.3: Examples/Tasks/futures/futures.cc

16 CHAPTER 2. TASKS

2.2 Futures
In addition to taking arguments, subtasks may also return results. However,
because a subtask executes asynchronously from its parent task, there is no
guarantee that the result of the subtask will be available when the parent
task or another task attempts to use it. A standard solution to this problem
is to provide futures. A future is a value that, if read, causes the task that is
performing the read to block if necessary until the value is available.

Figure 2.3 shows an excerpt from futures.cc, which is an extension of
substask.cc from Section 2.1. In this example, there are two subtasks, a pro-
ducer and a consumer. The top level task repeatedly calls producer/consumer
pairs in a loop. The top level task first calls the producer task, passing it a
unique odd integer, which the producer prints out. The producer returns a
unique even integer as a future. The top level task then passes this future to
a consumer task that reads and prints the number.

The launch of the producer task is exactly as before in Figure 2.2.
Unlike in that example, however, the producer subtask has a non-void
return value, and so the runtime->execute_task invocation returns a useful
result of type Future. Note that the future is passed to the consumer task
using the add_future method of the TaskLauncher class, not through the
TaskArgument object used to construct the TaskLauncher; futures must
always be passed as arguments using add_future and must not be included
in TaskArguments. Having a distinguished method for tracking arguments
to tasks that are futures allows the Legion runtime to track dependencies
between tasks. In this case, the Legion runtime will know that the consumer
task depends on the result of the corresponding producer task.

Legion gives access to the value of a future through the get_result
method of the Future class, as shown in the code for subtask_consumer in
Figure 2.3. (Note that get_result is templated on the type of value the
future holds.) There are two interesting cases of tasks reading from futures:

• If a parent task attempts to access a future returned by one of its
child tasks that has not yet completed, the parent task will block
until the value of the future is available. This behavior is the standard
semantics for futures, as described above. In Legion, however, this style
of programming is discouraged, as blocking operations are generally
detrimental to achieving the highest possible performance.

• Figure 2.3 illustrates idiomatic use of futures in Legion: a future
returned by one subtask is passed as an argument to another subtask.
Because Legion knows the consumer task depends on the producer

2.3. POINTS, RECTANGLES AND DOMAINS 17

task, the consumer task will not be run by the Legion runtime until
the producer task has terminated. Thus, all references to the future
in the consumer task are guaranteed to return immediately, without
blocking.

2.3 Points, Rectangles and Domains
Up to this point we have discussed individual tasks. Legion also provides
mechanisms for naming and launching sets of tasks. The ability to name
and manipulate sets of things, and in particular sets of points, is useful for
more than dealing with sets of tasks, and so we first present the general
mechanism in Legion for defining points, rectangles and domains.

A point is an n-tuple of integers. The Point constructor, which is
templated on the dimension n, is used to create points:

Point<1> one(1); // The 1 dimensional point <1>
Point<1> two(2); // The 1 dimensional point <2>
Point<2> zeroes(0,0); // The 2 dimensional point <0,0>
Point<2> twos(2,2); // The 2 dimensional point <2,2>
Point<2> threes(3,3); // The 2 dimensional point <3,3>
Point<3> fours(4,4,4); // The 3 dimensional point <4,4,4>

There are many operations defined on points. For example, points can
be summed:

twos + threes // the point <5,5>

and one can take the dot product of two points:

twos.dot(threes) // the integer 12

The following are true:

twos == twos
twos != threes

A pair of points a and b defines a rectangle that includes all the points that
are greater than or equal to a and less than or equal to b. For example:

// the points <0,0> <0,1> <0,2> <0,3>
// <1,0> <1,1> <1,2> <1,3>
// <2,0> <2,1> <2,2> <2,3>
// <3,0> <3,1> <3,2> <3,3>

18 CHAPTER 2. TASKS

Rect<2> big(zeroes,threes);

// the points <2,2> <2,3>
// <3,2> <3,3>
Rect<2> small(twos,threes);

There are also many operations defined on rectangles. A few examples, all
of which evaluate to true:

big != small
big.contains(small)
small.overlaps(big)
small.intersection(big) == small

Note that the intersection of two rectangles is always a rectangle. A domain
is an alternative type for rectangles. A Rect can be converted to a Domain:

Domain bigdomain = big;

The difference between the two types is that Rects are templated on the
dimension of the rectangle, while Domains are not. Legion runtime meth-
ods generally take Domain arguments and use Domains internally, but for
application code the extra type checking provided by the Rect type (which
ensures that the operations are applied to Rect arguments with compatible
dimensions) is useful. The recommended programming style is to create
Rects and convert them to Domains at the point of a Legion runtime call.
Most of these type conversions will be handled implicitly—the programmer
usually does not need to explicitly cast a Rect to a Domain. It is also possible
to work directly with the Domain type, which has many of the same methods
as Rect (see lowlevel.h in the runtime/ directory).

Analagous to Rect and Domain, there is a less-typed version of the type
Point called DomainPoint. Again, the difference between the two types
is that the Point class is templated on the number of dimensions while
DomainPoint is not. For Legion methods that require a DomainPoint, there
is a function to convert a Point:

DomainPoint dtwos = twos;

As before, most Legion runtime calls take DomainPoints, but programmers
should probably prefer using the Point type for the extra type checking
provided.

The example program Examples/Tasks/domains/domains.cc includes
all of the examples in this section and more.

2.4. INDEX LAUNCHES 19

2.4 Index Launches

We now return to the Legion mechanisms for launching multiple tasks in a
single operation. The main reason for using such index launches is efficiency,
as the overhead of starting n tasks with a single call is much less than
launching n separate tasks, and the difference in performance only grows
with n. Thus, when launching even tens of tasks, an index launch should be
used if possible. Not all sets of tasks can be initiated using an index launch;
index launches are for executing multiple instances of the same task where
all of the task instances can run in parallel.

Figure 2.4 implements the same computation as the example in Figure 2.3,
but instead of launching a single producer and consumer pair at a time, in
Figure 2.4 all of the producers are launched in a single Legion runtime call,
followed by another single call to launch all of the consumers.

We now work through this example in detail, as it introduces several
new Legion runtime calls. First a one dimensional Rect launch_domain is
created with the points 1..points, where points is set to 50. Note that
while the application code uses Rects and Points that the signatures of
the runtime interfaces that are called use Domains and DomainPoints and
Legion takes care of the conversions.

When launching multiple tasks simultaneously, we need some way to
describe for each task what argument it should receive. There are two kinds
of arguments that Legion supports: arguments that are common to all tasks
(i.e., the same value is passed to all the tasks) and arguments that are specific
to a particular task. Figure 2.4 illustrates how to pass a (potentially) different
argument to each subtask. An ArgumentMap maps a point (specifically, a
DomainPoint) p in the task index space to an argument for task p. In the
figure, the ArgumentMap maps p to 2p. Note that an ArgumentMap does not
need to name an argument for every point in the index space.

The procedure for launching a set of tasks is analogous to launching
a single task. Following standard Legion practice, we first create a class
derived from IndexLauncher for each kind of task we will use in an index
launch. These classes, ProducerTasks and ConsumerTasks in this example,
encapsulate all of the information about the index task launch that is the
same across all calls (e.g., the task id to be launched). The ProducerTasks
index launcher takes the launch domain and an argument map. Executing
the runtime->execute_index_space method invokes all of the tasks in the
launch domain.

The execute_task_space for the producer tasks returns not a single
Future, but a FutureMap, which maps each point in the index space to a

20 CHAPTER 2. TASKS

1 void top_level_task(const Task ∗task,
2 const std::vector⟨PhysicalRegion⟩ ®ions,
3 Context ctx,
4 Runtime ∗runtime)
5 {
6 // Launch 50 tasks.
7 int points = 50;
8 const Rect⟨1⟩ launch_domain(1,points);
9 ArgumentMap producer_arg_map;

10 for (int i = 0; i ⟨ points; i += 1)
11 {
12 int subtask_id = 2∗i;
13 producer_arg_map.set_point(Point⟨1⟩(i+1), TaskArgument(&subtask_id,sizeof(int)));
14 }
15 ProducerTasks producer_launcher(launch_domain, producer_arg_map);
16 //
17 // Since each producer task returns an integer, the index launch will return a FutureMap, a map from
18 // the launch domain to a future for each point. The FutureMap can be used as an ArgumentMap to a subsequent
19 // index launch.
20 //
21 FutureMap fm = runtime−⟩execute_index_space(ctx, producer_launcher);
22 ArgumentMap consumer_arg_map(fm);
23 ConsumerTasks consumer_launcher(launch_domain, consumer_arg_map);
24 runtime−⟩execute_index_space(ctx, consumer_launcher);
25 }
26
27 int subtask_producer(const Task ∗task,
28 const std::vector⟨PhysicalRegion⟩ ®ions,
29 Context ctx,
30 Runtime ∗runtime)
31 {
32 int subtask_number = ∗((const int ∗)task−⟩local_args);
33 printf("\tProducer␣subtask␣%d\n", subtask_number);
34 return subtask_number + 1;
35 }
36
37 void subtask_consumer(const Task ∗task,
38 const std::vector⟨PhysicalRegion⟩ ®ions,
39 Context ctx,
40 Runtime ∗runtime)
41 {
42 int subtask_number = ∗((const int∗)task−⟩local_args);
43 printf("\tConsumer␣subtask␣%d\n", subtask_number);
44 }

Figure 2.4: Examples/Tasks/indexlaunch/indexlaunch.cc

2.4. INDEX LAUNCHES 21

Future. Figure 2.4 shows one way to use the FutureMap by converting it to
an ArgumentMap that is passed to the index launch for the consumer tasks.
Note that the launch of the consumer subtasks does not block waiting for all
of the futures to be resolved; instead, each consumer subtask runs only after
the future it depends on is resolved.

The subtask definitions are straightforward. Note that the argument
specific to the subtask is in the field task->local_args. Also note that
when the consumer task actually runs the argument is not a future, but a
fully evaluated int.

22 CHAPTER 2. TASKS

Chapter 3

Regions

Regions are the primary abstraction for managing data in Legion. Futures,
which the examples in Chapter 2 emphasize, are for passing small amounts
of data between tasks. Regions are for holding and processing bulk data.

Because data placement and movement are crucial to performance in
modern machines, Legion provides extensive facilities for managing regions.
These features are a distinctive aspect of Legion and also probably the
most novel and unfamiliar to new Legion programmers. Most programming
systems hide the placement, movement and organization of data; in Legion,
these operations are exposed to the application.

Figure 3.1 shows a very simple program that creates a logical region. A
logical region is a table (or, equivalently, a relation), with an index space
defining the rows and a field space defining the columns. The example in
Figure 3.1 illustrates a number of points:

• An IndexSpace defines a set of indices for a region. The create_index_space
call in this program creates a index space with 100 elements. Multidi-
mensional index spaces can be created from multidimensional Rects.

• Field spaces are created in a manner analogous to index spaces. Unlike
indices, whose size must be declared, there is a global upper bound
on the number of fields in a field space (and exceeding this bound will
cause the Legion runtime to report an error). This particular field space
has only a single field FIELD_A. Note that each field has an associated
type, the size of which is the first argument to allocate_field.

• Once the index space and field space are created, they are used to create
a logical region lr1. A second call to create_logical_region creates
a separate logical region lr2. It is very common to build multiple

23

24 CHAPTER 3. REGIONS

1 // create an index space
2 Rect⟨1⟩ rec(Point⟨1⟩(0),Point⟨1⟩(99));
3 IndexSpace is = runtime−⟩create_index_space(ctx,rec);
4
5 // create a field space
6 FieldSpace fs = runtime−⟩create_field_space(ctx);
7 FieldAllocator field_allocator = runtime−⟩create_field_allocator(ctx,fs);
8 FieldID fida = field_allocator.allocate_field(sizeof(float), FIELD_A);
9 assert(fida == FIELD_A);

10
11 // create two distinct logical regions
12 LogicalRegion lr1 = runtime−⟩create_logical_region(ctx,is,fs);
13 LogicalRegion lr2 = runtime−⟩create_logical_region(ctx,is,fs);
14
15 // Clean up. IndexAllocators and FieldAllocators automatically have their resources reclaimed
16 // when they go out of scope.
17 runtime−⟩destroy_logical_region(ctx,lr1);
18 runtime−⟩destroy_logical_region(ctx,lr2);
19 runtime−⟩destroy_field_space(ctx,fs);
20 runtime−⟩destroy_index_space(ctx,is);

Figure 3.1: Examples/Regions/logicalregions/logicalregions.cc

logical regions with either the same index space, field space or both.
By providing separate steps for creating the field and index spaces
prior to creating a logical region, application programmers can reuse
them in the creation of multiple regions, thereby making it easier to
keep all the regions in sync as the program evolves.

Logical regions never hold any data. In fact, logical regions consume no
space except for their metadata (number of entries, names of the fields, etc.).
A physical instance of a logical region holds a copy of the actual data for
that region. The reason for having both concepts, logical region and physical
instance, is that there is not a one-to-one relationship between logical regions
and instances. It is common, for example, to have multiple physical instances
of the same logical region (i.e., multiple copies) distributed around the system
in some fashion to improve read performance. Because this program does
not create any physical instances, no real computation takes place, either;
the example simply shows how to create, and then destroy, a logical region.

3.1. PHYSICAL INSTANCES, REGION REQUIREMENTS, PRIVILEGES AND ACCESSORS25

1 TaskLauncher init_launcher(INIT_TASK_ID, TaskArgument(NULL,0));
2 init_launcher.add_region_requirement(RegionRequirement(lr, WRITE_DISCARD, EXCLUSIVE, lr));
3 init_launcher.add_field(0, FIELD_A);
4 rt−⟩execute_task(ctx, init_launcher);
5
6 TaskLauncher sum_launcher(SUM_TASK_ID, TaskArgument(NULL,0));
7 sum_launcher.add_region_requirement(RegionRequirement(lr, READ_ONLY, EXCLUSIVE, lr));
8 sum_launcher.add_field(0, FIELD_A);
9 rt−⟩execute_task(ctx, sum_launcher);

Figure 3.2: Task launches from Examples/Regions/physicalregions/physicalregions.cc.

3.1 Physical Instances, Region Requirements, Priv-
ileges and Accessors

Actually doing something with a logical region requires a physical instance.
The simplest way to create a physical instance is to pass a logical region to a
subtask, as Legion automatically provides a physical instance to the subtask.
This instance is guaranteed to be up-to-date, meaning it reflects any changes
made to the region by previous tasks that the subtask depends on. In the
common case, this means that the results of all previously launched tasks
that updated the region will be reflected in the instance, but the programmer
can specify other semantics if desired; see Chapter 6.

Figure 3.2 shows an excerpt from the top level task in
Examples/Regions/physicalregions/physicalregions.cc. This program
is an extension of the program in Figure 3.1—the creation of the (single)
logical region is exactly the same as in the previous example. Here we call
two tasks that operate on the logical region lr. The first task intializes the
elements of the region and the second sums the elements and prints out the
results. As in previous examples, a TaskLauncher object describes the task
to be called and its non-region arguments, of which there are none. When
tasks also have region arguments, additional information must be added to
the TaskLauncher. For each region the task will access, a region requirement
must be added to the launcher using the method add_region_requirement.
A RegionRequirement has four components:

• The logical region that will be accessed.

• A privilege, which indicates how the subtask will use the logical region.
In this program, the two tasks have different privileges: the initialization
task accesses the region with privilege WRITE_DISCARD (which means
it will overwrite everything that was previously in the region) and

26 CHAPTER 3. REGIONS

the sum task accesses the region with privilege READ_ONLY. Privileges
are used by the Legion runtime to determine which tasks can run in
parallel. For example, if two tasks only read from a region, they can
execute simultaneously. Other interesting privileges that we will see in
future examples are READ_WRITE (the task both reads and writes the
region), WRITE (the task only writes the region, but may not update
every element as in WRITE_DISCARD), and REDUCE (the task performs
reductions to the region). It is an error to attempt to access a region
in a manner inconsistent with the privileges, and most such errors can
be checked by the Legion runtime with appropriate debugging settings.
The runtime cannot check that every region element is updated when
using privilege WRITE_DISCARD and failure to do so may result in
incorrect behavior.

• A coherence mode, which indicates what the subtask expects to see
from other tasks that may access the region simultaneously. The mode
EXCLUSIVE means that this subtask must appear to have exclusive
access to the region—if any other tasks do access the region, any
changes they make cannot be visible to this subtask. Furthermore, the
subtask must see all updates from previously launched tasks. Other
coherence modes that we will discuss are ATOMIC and SIMULTANEOUS
(see Chapter 6).

• Finally, the region requirement names its parent region. We have not
yet discussed subregions (see Chapter 4), so we defer a full explanation
of this argument. Suffice it to say that it should either be the parent
region or, if the region in question has no parent, the region itself, as
in this example.

Finally, each region requirement applies to one or more fields of the
region, and the method add_field is used to record which field(s) each
region requirement applies to. In this example, there is only one region
requirement with index 0 (region requirements are numbered from 0 in the
order they are added to the launcher) and a single field FIELD_A that will
be accessed by the subtask.

We now turn our attention to the two subtasks. The initialization task
and the sum task have very similar structures, differing only in that the
intialization task writes a “1” in FIELD_A of every element of the region and
the sum task adds these numbers up and reports the sum. The sum task is
shown in Figure 3.3.

3.1. PHYSICAL INSTANCES, REGION REQUIREMENTS, PRIVILEGES AND ACCESSORS27

1 void sum_task(const Task ∗task,
2 const std::vector⟨PhysicalRegion⟩ &rgns,
3 Context ctx, Runtime ∗rt)
4 {
5 const FieldAccessor⟨READ_ONLY,int,1⟩ fa_a(rgns[0], FIELD_A);
6 Rect⟨1⟩ d = rt−⟩get_index_space_domain(ctx,task−⟩regions[0].region.get_index_space());
7 int sum = 0;
8 for (PointInRectIterator⟨1⟩ itr(d); itr(); itr++)
9 {

10 sum += fa_a[∗itr];
11 }
12 printf("The␣sum␣of␣the␣elements␣of␣the␣region␣is␣%d\n",sum);
13 }

Figure 3.3: Region accessors from Examples/Regions/physicalregions/physicalregions.cc.

When sum_task is called, the Legion runtime guarantees that it will have
access to an up-to-date physical instance of the region lr reflecting all the
changes made by previously launched tasks that modify the FIELD_A of the
region (which in this case is just the initialization task init_task). The
only new feature that we need to discuss, then, is how the task accesses the
data in FIELD_A.

Access to the fields of a region is done through a FieldAccessor. Ac-
cessors in Legion provide a level of indirection that shields application code
from the details of how physical instances are represented in memory. Under
the hood, the Legion runtime chooses among many different representations
depending on the circumstances, so this extra level of abstraction avoids
having those details exposed and fixed in application code.

In Figure 3.3, the field FIELD_A is named in the creation of a RegionAccessor
for the first (and only) physical region argument. Note that the type of the
field is also included as part of the construction of the accessor. The other
requirement to access the region is knowledge of the region’s index space.
Figure 3.3 illustrates how to recover a region’s index space from a physical
instance of the region using the get_index_space method. Since this region
has a dense index space, we convert the domain to a rectangle (using the
get_rect method). All that is left, then, is to iterate over all the points
of the index space (the rectangle rect) and read the field FIELD_A for each
such point in the region using the field accessor fa_a.

The example in Figure 3.3 uses an iterator, which is convenient when
the index space is a dense rectangle and one wants to operate on all of the
points in a region. Accessors can also take a Point argument of the correct
dimension for their region to directly access a single point in the index space.

28 CHAPTER 3. REGIONS

1 LogicalRegion lr = rt−⟩create_logical_region(ctx,is,fs);
2
3 int init = 1;
4 rt−⟩fill_field(ctx,lr,lr,fida,&init,sizeof(init));

Figure 3.4: Examples/Regions/fillfields/fillfields.cc

There are many different types of region accessors provided by Le-
gion. We mention a few of the more common ones here; the comments
in legion/runtime/legion.h provides a good overview of the complete set
of accessors.

• There are many accessor constructors pre-defined for different combi-
nations of privileges and field types. For example, a AccessorROfloat
is the type of an accessor with read-only privileges on a field of type
float. The accessor in Figure 3.3 could have been constructed using
AccessorROint(regns[0],FIELD_A) instead of directly invoking the
FieldAccessor template.

• There is a different template, ReductionAccessor, to use with re-
duction privileges. For instances with reduction-only privileges, only
ReductionAccessors should be used.

• The Generic accessor has extensive debugging support and will, for
example, detect out of bounds accesses, which is a common program-
ming error. The Generic accessor is also very slow and should never
be used in production code. The FieldAccessor used in Figure 3.3
does no checking and is much more performant.

3.2 Fill Fields
It is common to initialize all instances of a particular field in a region to the
same value, and so Legion provides direct support for this idiom. Figure 3.4
gives an excerpt from an example identical to the one in Figure 3.3, except
that the initialization task has been replaced by a call to the runtime that
fills every occurrence of FIELD_A with a default value.

The code in Figure 3.4 uses the Legion runtime method fill_field to
initialize every occurrence of FIELD_A to 1. The fill_field method takes
six arguments:

• Like almost all runtime calls, the first argument is the current task’s
context.

3.3. INLINE LAUNCHERS 29

• The second argument is the region to be initialized.

• The third argument is the parent region, or the region itself if it
has no parent. The parent region is needed to ensure that there are
sufficient privileges to perform the initialization (READ_WRITE privilege
is required).

• The fourth argument is the ID of the field to be initialized.

• The fifth argument is a buffer holding the initial value.

• The sixth argument is the size of the buffer. The fill_field call
makes a copy of the buffer.

The advantage of using fill_field is that the Legion runtime performs
the initializaion lazily the next time that the field is used, which makes
the operation less expensive than a normal task call. Thus, fill_field is
preferred whenever all instances of a field are initialized to the same value.

3.3 Inline Launchers
The most common way to gain access to a region r is by launching a task
t with a region requirement on r, in which case the Legion runtime will
automatically map a physical instance of r that will be accessible in t. There
are situations where a task may need to map a physical instance of a region
explicitly, such as when a task needs to access a newly created region or
a new region is returned from a child task. Figure 3.5 shows the use of
an inline mapping to explicitly map a physical region. After creating a
new logical region an InlineLauncher object (so named because it has
similar functionality to a TaskLauncher object) is created with a region
requirement and any associated fields. The runtime methods map_region
and unmap_region assign and unassign a physical instance to pr. Note
that map_region is an asynchronous call and it is necessary to wait for the
physical instance to become valid before it can be used.

A important invariant maintained by the Legion runtime system is that
tasks have exclusive access to regions to which they have write access (we
will see how to relax this requirement in Chapter 6). This invariant implies
that when a parent task calls a child task, any regions passed to the child
that may be written must be unmapped before the call and remapped after
the call. (To see that unmapping a region before passing it to a child task is
necessary, keep in mind that task calls are asynchronous, and so the parent

30 CHAPTER 3. REGIONS

1 LogicalRegion lr = rt−⟩create_logical_region(ctx,is,fs);
2 InlineLauncher launcher(RegionRequirement(lr, WRITE_DISCARD, EXCLUSIVE, lr).add_field(0,FIELD_A));
3 PhysicalRegion pr = rt−⟩map_region(ctx, launcher);
4 pr.wait_until_valid();

... lines omitted ...

1 // cleanup
2 rt−⟩unmap_region(ctx, pr);

Figure 3.5: Examples/Regions/inlinemapping/inlinemapping.cc

and child tasks may execute in parallel. If a parent task does not unmap a
region required by a child task with write privileges, the application will most
likely deadlock.) For regions passed as region requirements to task launches
and where the programmer has not explicitly mapped (or unmapped) the
region, the runtime system automatically wraps the task call in the necessary
calls to unmap_region and map_region. In cases where the parent task
does not touch the region across many child task calls, performance can
be improved if the application explicitly unmaps the region at the earliest
possible point and maps the region again at the latest possible point, thereby
avoiding any mapping/unmapping of the region during intermediate task
calls. Whenever a program explicitly maps or unmaps a region r within a
task, the Legion runtime will no longer silently wrap child task invocations
with calls to unmap/map r.

3.4 Layout Constraints

In Chapter 2 we introduced the idea of a constraint, a restriction specified by
the program on how the Legion runtime may use certain application objects,
such as specifying what kind of processor a task can execute on. The most
commonly used constraints on regions are layout constraints.

Figure 3.6 shows the main function from one of the examples in the
Legion repository. The function first defines two layout constraints, named
column_major (lines 5-14) and row_major (liines 16-25). The constants
DIM_X, DIM_Y and DIM_Z are distinguished names given to the first three
dimensions of an index space; DIM_F stands for all the fields of a region.
An OrderingConstraint specifies which dimension varies the fastest in a
region’s layout: In column_major it is the x dimension, in row_major it is
the y dimension. The z and higher dimensions are ignored here because the

3.4. LAYOUT CONSTRAINTS 31

1 int main(int argc, char ∗∗argv)
2 {
3 Runtime::set_top_level_task_id(TOP_LEVEL_TASK_ID);
4
5 LayoutConstraintID column_major;
6 {
7 OrderingConstraint order(true/∗contiguous∗/);
8 order.ordering.push_back(DIM_X);
9 order.ordering.push_back(DIM_Y);

10 order.ordering.push_back(DIM_F);
11 LayoutConstraintRegistrar registrar;
12 registrar.add_constraint(order);
13 column_major = Runtime::preregister_layout(registrar);
14 }
15
16 LayoutConstraintID row_major;
17 {
18 OrderingConstraint order(true/∗contiguous∗/);
19 order.ordering.push_back(DIM_Y);
20 order.ordering.push_back(DIM_X);
21 order.ordering.push_back(DIM_F);
22 LayoutConstraintRegistrar registrar;
23 registrar.add_constraint(order);
24 row_major = Runtime::preregister_layout(registrar);
25 }
26
27 {
28 TaskVariantRegistrar registrar(TOP_LEVEL_TASK_ID, "top_level");
29 registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
30 Runtime::preregister_task_variant⟨top_level_task⟩(registrar, "top_level");
31 }
32
33 {
34 TaskVariantRegistrar registrar(INIT_MATRIX_TASK_ID, "init_matrix");
35 registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
36 registrar.add_layout_constraint_set(0, column_major);
37 registrar.set_leaf();
38 Runtime::preregister_task_variant⟨init_matrix_task⟩(registrar, "init_matrix");
39 }
40
41 {
42 TaskVariantRegistrar registrar(TRANSPOSE_MATRIX_TASK_ID, "transpose");
43 registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
44 registrar.add_layout_constraint_set(0, column_major);
45 registrar.add_layout_constraint_set(1, row_major);
46 registrar.set_leaf();
47 Runtime::preregister_task_variant⟨transpose_matrix_task⟩(registrar, "transpose");
48 }
49
50 {
51 TaskVariantRegistrar registrar(CHECK_MATRIX_TASK_ID, "check_matrix");
52 registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
53 registrar.add_layout_constraint_set(0, column_major);
54 registrar.set_leaf();
55 Runtime::preregister_task_variant⟨check_matrix_task⟩(registrar, "check_matrix");
56 }
57
58 return Runtime::start(argc, argv);
59 }

Figure 3.6: The main function from
legion/examples/layout_constraints/transpose.cc.

32 CHAPTER 3. REGIONS

regions involved for this application are two dimensional. Note that these are
struct-of-array layouts; by putting the field dimension first we could specify
array-of-struct layouts as well.

To use a layout constraint we associate it with a region argument of a
task. When the transpose_matrix_task is registered (lines 42-47), the first
region argument (region 0) is constrained to be in column_major layout while
the second region argument (region 1) is constrained to be in row_major
layout. When the task is run the runtime system ensures that the physical
instances used by the task adhere to any layout constraints.

It is also possible to specify blocked layouts. See the declarations and
comments in legion/runtime/legion/legion_constraint.h.

Layout constrains are most commonly used in two situations. First,
the code for a task may require a certain layout. For example, vectorized
code will necessarily require that the vectorized dimension be the fastest
varying. Second, when interoperating with external systems, by using layout
constraints the Legion system can describe what the layout of the pre-existing
data is, allowing the runtime to correctly interpret it and work with it without
making unnecesssary copies.

Chapter 4

Partitioning

The ability to partition regions into subregions is a core feature of Legion.
Many parallel programming systems have some notion of a distributed
collection—a collection of data that is broken up into pieces and put in
different places across a distributed machine. In Legion, the facilities for
partitioning data are more expressive than most ther programming systems
in several important ways. First, partitioning can be done recursively to
arbitrary levels: regions can be partitioned into subregions, which can
themselves be partitioned further into additional subregions, and so on.
The partitioning hierarchy defines a tree, called the region tree, that is a
useful abstraction of how data is organized in a Legion application. An
important step in designing a Legion application is deciding how data will
be partitioned—i.e., deciding what the region tree will look like.

A second distinguishing characteristic is that partitioning is done dynam-
ically: The application can create and destroy region partitions at runtime.
Thus, Legion can naturally express methods where the organization of data
needs to change during the computation, such as adaptive mesh refinement
algorithms. It is worth remembering, however, that partitioning can be an
expensive operation, so it is important that it be used judiciously. As long
as the cost of the partitioning is amortized over lots of computation on the
partition’s subregions, no performance problems from partitioning will arise.

A third distinguishing characteristic is that partitions are themselves
first-class objects in Legion. A partition is a collection of subregions, and
Legion has many different built-in operations for creating useful partitions;
presenting the most common of these methods for partitioning data is the
heart of this chapter.

Partitions do not need to be mathematical partitions, in fact in Legion a

33

34 CHAPTER 4. PARTITIONING

partition can be any set of subsets of a region. It is important to keep in
mind that partitions only name subsets of data; a partition does not allocate
storage for the subregions or make copies of data. This feature of partitions
leads to some useful programming idioms. For example, a program can create
a very large region, perhaps with billions of elements, and then partition
it and only materialize needed subregions, which is useful in cases where
there is a very large potential domain but only a relatively small subset will
actually be used. It is also common to create a region too large to fit in any
physical memory, partition it into subregions that will fit on each node, and
then create physical instances only of the subregions. The global name space
is still useful (e.g., in neighbor computations for stencils) even if the parent
region is never physically allocated.

The subregions in a partition can overlap (share elements), in which case
we say the partition is aliased; otherwise the partition is disjoint. For example,
aliased subregions can be useful in describing stencil patterns, where the
subblocks overlap by the width of the stencil perations. A complete partition
is one in which every element of the partitioned region is in at least one
subregion of the partition. Partitions in Legion do not need to be complete;
as an example, it is often useful to name only the overlapping boundaries of
blocks in stencils (the so-called ghost regions, which are a strict subset of the
entire computational domain).

These idioms for using partitions are illustrated in the examples in
the Legion repository. In this tutorial we focus on illustrating the basic
application of the most commonly used Legion partitioning operators.

4.1 Equal Partitions

The simplest and most common case of partitioning is an equal partition,
where a region is automatically partitioned into subregions of approximately
equal size. Figure 4.1 gives an example of partitioning a region into four
equal-size subregions. The number of subregions in the partition is given
by an index space, with one subregion created for each of the index space’s
points. On line 17 of Figure 4.1 an index space with four points is created
from a 1D Rect defined on line 16. This set of colors (the term for the
points in an index space used for naming the subregions of a partition)
is passed as an argument to create_equal_partition on line 18. Note
that the partitioning operation is applied to the index space, not directly
to a logical region. By partitioning the index space, the same partitioning
can be reused for multiple logical regions that share an index space. The

4.1. EQUAL PARTITIONS 35

get_logical_partition call on line 19 returns the logical partition of the
region defined by the index partition.

Lines 25-28 illustrate an important Legion idiom where an index launch is
performed over the subregions of a partition. Here the sum_task is applied to
each subregion of the lp partition of the region lr. Note that IndexLauncher
created on line 25 uses the color space of the partition as its launch domain.
A region requirement for sum_task is added to the launcher on line 26. We
saw region requirements in Chapter 3 for launches of individual tasks. Region
requirements for index launches have slightly different arguments:

• For an index launch the first argument is a logical partition. (For an
individual task the first argument is a logical region.)

• If the first argument is a logical partition, then the second argument
is the identifier of a projection functor f . For index point i in the
launch space and logical partition lp„ the task is passed f(lp, i) as
its argument. Projection function 0 is predefined to return the ith
subregion for the ith point in the launch domain—i.e., the task will
be applied to every subregion of lp, which is the most common case
in practice. Users can write and register their own projection functors
with the runtime system, much like task registration, for more complex
patterns of selecting the arguemnts to index tasks from a region tree.

• The rest of the fields are the same for both kinds of region requirements:
the privilege for the region (READ_ONLY in this example), the coherence
mode (EXCLUSIVE), and the parent region (lr) from which privileges
are derived.

On line 27 the field FIELD_A is added to the region requirement. The naming
of the fields in a region requirment is separated from the region requirement’s
construction because any number of fields can be part of a region requirement;
these are all the fields that the task will touch with the given permissions
and coherence mode.

The execution of the launcher on line 28 runs sum_task on all the
subregion sof lp. Instead of summing the entire region, the same sum_task
is now used to sum all four subregions separately.

An equal partition is an example of a mathematical partition: an equal
partition is always both disjoint (none of the subregions overlap) and complete
(every element of the region is included in some subregion).

The runtime does not guarantee anything about equal partitions other
than that the subreqions will be of approximately the same size. At the

36 CHAPTER 4. PARTITIONING

1 void top_level_task(const Task ∗task,
2 const std::vector⟨PhysicalRegion⟩ &rgns,
3 Context ctx,
4 Runtime ∗rt)
5 {
6 Rect⟨1⟩ rec(Point⟨1⟩(0),Point⟨1⟩(99));
7 IndexSpace is = rt−⟩create_index_space(ctx,rec);
8 FieldSpace fs = rt−⟩create_field_space(ctx);
9 FieldAllocator field_allocator = rt−⟩create_field_allocator(ctx,fs);

10 FieldID fida = field_allocator.allocate_field(sizeof(int), FIELD_A);
11 assert(fida == FIELD_A);
12
13
14 LogicalRegion lr = rt−⟩create_logical_region(ctx,is,fs);
15 int num_subregions = 4;
16 Rect⟨1⟩ colors(0,num_subregions − 1);
17 IndexSpace color_is = rt−⟩create_index_space(ctx, colors);
18 IndexPartition ip = rt−⟩create_equal_partition(ctx, is, color_is);
19 LogicalPartition lp = rt−⟩get_logical_partition(ctx, lr, ip);
20
21 int init = 1;
22 rt−⟩fill_field(ctx,lr,lr,fida,&init,sizeof(init));
23
24 ArgumentMap arg_map;
25 IndexLauncher sum_launcher(SUM_TASK_ID, colors, TaskArgument(NULL,0), arg_map);
26 sum_launcher.add_region_requirement(RegionRequirement(lp, 0, READ_ONLY, EXCLUSIVE, lr));
27 sum_launcher.region_requirements[0].add_field(FIELD_A);
28 rt−⟩execute_index_space(ctx, sum_launcher);
29
30 // Clean up. IndexAllocators and FieldAllocators automatically have their resources reclaimed
31 // when they go out of scope.
32 rt−⟩destroy_logical_region(ctx,lr);
33 rt−⟩destroy_field_space(ctx,fs);
34 rt−⟩destroy_index_space(ctx,is);
35 }

Figure 4.1: Examples/Partitions/equal/equal.cc

time of this writing, for example, an equal partition of a multidimensional
region will partition the region in just the first dimension. If a specific kind
of equal partition is desired other partitioning operators can be used. For
example, a blocked partition can be created with partition by restriction (see
Section 4.3).

4.2 Partition by Field

Equal partitioning leaves the choice of how to partition the elements of a
region up to the runtime system, requiring only that the sizes of subregions
are equal or nearly equal. At the other extreme is partition by field, where the

4.3. PARTITION BY RESTRICTION 37

application prescribes for each individual element of a region which subregion
it should be assigned to.

The program in Figure 4.2 illustrates partitioning by field. This ex-
ample is similar to the previous one, but there is now an additional field
FIELD_PARTITION that holds a coloring of the elements of the region. The
color_launcher on lines 23-26 invokes the color_task which assigns a color
(a Point<1> in this example; colors can also be multidimensional points) to
each element of the region. In this case the assignment is a simple blocking,
with each contiguous quarter of the elements assigned the same color (lines
46-56; the function uses the number of colors as the divisor, which is 4 in this
example), but the coloring could be any assignment of the color space to the
elements of the field. Note also that the coloring is dynamically computed;
programs can compute a coloring for a field and then partition the region
accordingly.

The actual partitioning of the index space occurs on line 28. The runtime
call create_partition_by_field takes the current context, the region, the
parent region (or the same region if it has no parent, as in this case), and
the field with the coloring. On line 29 the partition of the index space is
used to retrieve the logical partition.

The logic for launching the sum_task over the paritition on lines 31-35 is
the same as in Figure 4.1.

4.3 Partition by Restriction

Another common partitioning idiom is to divide a region into blocks of the
same size, a blocked partitioning. For applications involving stencils, it can
also be useful for the blocks to include “ghost cells” adjacent to the block,
essentially expanding the block in one or more dimensions. Figure 4.3 shows
a 1D region partitioned into four subblocks, where each block includes one
ghost element on each side. For a 1D region of 100 elements as shown in the
figure, the result is four subblocks of size 26, 27, 27, and 26: the two interior
blocks have a ghost element on each side, while the first and last blocks have
one ghost element each as the other element would be out of bounds of the
region.

Figure 4.4 gives code for computing the partitioning shown in Figure 4.3.
The essential differences from previous examples are on lines 21-27. Starting
with the create_partition_by_restriction call itself on line 27, we see
that in addition to the usual context, index space, and color space this
operation also takes a transform and an extent. The extent E is a “generic”

38 CHAPTER 4. PARTITIONING

1 void top_level_task(const Task ∗task,
2 const std::vector⟨PhysicalRegion⟩ &rgns,
3 Context ctx,
4 Runtime ∗rt)
5 {
6 Rect⟨1⟩ rec(Point⟨1⟩(0),Point⟨1⟩(99));
7 IndexSpace is = rt−⟩create_index_space(ctx,rec);
8 FieldSpace fs = rt−⟩create_field_space(ctx);
9 FieldAllocator field_allocator = rt−⟩create_field_allocator(ctx,fs);

10 FieldID fida = field_allocator.allocate_field(sizeof(int), FIELD_A);
11 FieldID fidp = field_allocator.allocate_field(sizeof(Point⟨1⟩), FIELD_PARTITION);
12 assert(fida == FIELD_A);
13 assert(fidp == FIELD_PARTITION);
14
15 LogicalRegion lr = rt−⟩create_logical_region(ctx,is,fs);
16
17 int init = 1;
18 rt−⟩fill_field(ctx,lr,lr,fida,&init,sizeof(init));
19
20 int num_subregions = 4;
21 Rect⟨1⟩ colors(0,num_subregions−1);
22 IndexSpace cis = rt−⟩create_index_space(ctx,colors);
23 TaskLauncher color_launcher(COLOR_TASK_ID, TaskArgument(&colors,sizeof(Rect⟨1⟩)));
24 color_launcher.add_region_requirement(RegionRequirement(lr, WRITE_DISCARD, EXCLUSIVE, lr));
25 color_launcher.add_field(0,FIELD_PARTITION);
26 rt−⟩execute_task(ctx, color_launcher);
27
28 IndexPartition ip = rt−⟩create_partition_by_field(ctx, lr, lr, FIELD_PARTITION,cis);
29 LogicalPartition lp = rt−⟩get_logical_partition(ctx, lr, ip);
30
31 ArgumentMap arg_map;
32 IndexLauncher sum_launcher(SUM_TASK_ID, colors, TaskArgument(NULL,0), arg_map);
33 sum_launcher.add_region_requirement(RegionRequirement(lp, 0, READ_ONLY, EXCLUSIVE, lr));
34 sum_launcher.region_requirements[0].add_field(FIELD_A);
35 rt−⟩execute_index_space(ctx, sum_launcher);
36 }
37
38 void color_task(const Task ∗task,
39 const std::vector⟨PhysicalRegion⟩ &rgns,
40 Context ctx, Runtime ∗rt)
41 {
42 //
43 // FieldAccessor is templated on privilege, field type, and number of index space dimensions
44 //
45
46 Rect⟨1⟩ colors = ∗((Rect⟨1⟩ ∗) task−⟩args);
47 int divisor = (colors.hi − colors.lo) + 1;
48 const FieldAccessor⟨WRITE_DISCARD,Point⟨1⟩,1⟩ fa_p(rgns[0], FIELD_PARTITION);
49 Rect⟨1⟩ d = rt−⟩get_index_space_domain(ctx, task−⟩regions[0].region.get_index_space());
50 int quarter = ((int) (d.hi−d.lo) + 1) / divisor; // assume this number is an integer
51 int x = 0;
52
53 for (PointInRectIterator⟨1⟩ itr(d); itr(); itr++)
54 {
55 fa_p[∗itr] = Point⟨1⟩((int) (x / quarter));
56 x = x + 1;
57 }
58 }

Figure 4.2: Examples/Partitions/partition_by_field/pbf.cc

4.4. SET-BASED PARTITIONS 39

Figure 4.3: A blocked partition of a 1D region with ghost elements.

rectangle of the desired size—all subregions in the partition will have the
shape of E. The transform T is an n × m matrix, where n is the number
of dimensions of the color space and m is the number of dimensions of the
region. For a point p in the color space, the points in the corresponding
subregion are defined by the rectangle Tp + E. That is Tp defines an offset
that is added to E to name the points in the subregion associated with p.

In this example, since the region and color space are both 1D, the
transform is a 1x1 matrix, a single integer (lines 21-23); this transform
says that subregions will start 25 elements apart (the blocksize). The
extent defined on line 26 says that a subregion will extend one element
to the left and 25 elements to the right of the 0-point of the subregion,
so in general each subregion will have 27 elements. Legion automatically
clips any subregions that extend beyond the bounds of the region being
partitioned, so for a color space of 0, 1, 2, 3 the corresponding subregions
will have elements 0..25, 24..50, 49..75, 74..99. Note that unlike the other
partitioning operations we have seen so far, the values of the color space
are significant and affect the position of the subregion—for a region with an
index space 0..99, it is necessary that the color space be 0..3 and not some
other set of four points.

4.4 Set-Based Partitions

Equal partitions, partitions by field and partitions by restriction are all
examples of independent partitions, which are partitions that do not depend
on other partitions. Legion also provides a number of dependent partitioning
operators that take partitions as input and produce partitions as output.
Dependent partitioning is used heavily in most Legion programs; it is not
uncommon to see long chains of partitioning operators to name complex

40 CHAPTER 4. PARTITIONING

1 void top_level_task(const Task ∗task,
2 const std::vector⟨PhysicalRegion⟩ &rgns,
3 Context ctx,
4 Runtime ∗rt)
5 {
6 Rect⟨1⟩ rec(Point⟨1⟩(0),Point⟨1⟩(99));
7 IndexSpace is = rt−⟩create_index_space(ctx,rec);
8 FieldSpace fs = rt−⟩create_field_space(ctx);
9 FieldAllocator field_allocator = rt−⟩create_field_allocator(ctx,fs);

10 FieldID fida = field_allocator.allocate_field(sizeof(int), FIELD_A);
11 assert(fida == FIELD_A);
12
13
14 LogicalRegion lr = rt−⟩create_logical_region(ctx,is,fs);
15 int init = 1;
16 rt−⟩fill_field(ctx,lr,lr,fida,&init,sizeof(init));
17
18 int num_subregions = 4;
19 Rect⟨1⟩ colors(0,num_subregions − 1);
20 IndexSpace color_is = rt−⟩create_index_space(ctx, colors);
21 int block_size = 25;
22 Transform⟨1,1⟩ transform;
23 transform[0][0] = block_size;
24 // Each subregion will have one "ghost" element on each side.
25 // Ghost elements out of bounds of the parent region are clipped.
26 Rect⟨1⟩ extent(−1, block_size);
27 IndexPartition ip = rt−⟩create_partition_by_restriction(ctx, is, color_is, transform, extent);
28 LogicalPartition lp = rt−⟩get_logical_partition(ctx, lr, ip);
29
30 ArgumentMap arg_map;
31 IndexLauncher sum_launcher(SUM_TASK_ID, colors, TaskArgument(NULL,0), arg_map);
32 sum_launcher.add_region_requirement(RegionRequirement(lp, 0, READ_ONLY, EXCLUSIVE, lr));
33 sum_launcher.region_requirements[0].add_field(FIELD_A);
34 rt−⟩execute_index_space(ctx, sum_launcher);
35 }

Figure 4.4: Examples/Partitions/partition_by_restriction/pbr.cc

4.5. IMAGE PARTITIONS 41

subsets of the data that the program needs to manipulate.
An difference partition takes two index space partitions and computes

their set difference by color: A subspace of the difference partition is the set
difference of two subspaces, one from each of the two argument partitions,
with the same color. Thus, there is a subspace in the difference partition for
every color that the two argument partitions have in common.

Figure 4.5 gives an example that creates two partitions by restriction: a
“big” partition that includes blocks of 26 elements spaced 25 elements apart
(lines 22-28, similar to the partition in Figure 4.2 but with only one ghost
element per subspace) and a “small” partition that is a disjoint partition
of blocks of 25 elements spaced 25 elements apart (lines 22-24, 26, and 29).
The region has 101 elements (line 6) to ensure that every subspace of the
big partition actually has 26 elements (i.e., no elements are clipped for being
out of bounds). The difference partition subtracts the small partition from
the big partition, so each subspace in the index partition names exactly the
ghost element of the corresponding big subspace. The result of the sum_task
shows that there is exactly one element in each subregion of the difference
partition.

Legion also provides create_partition_by_union, which computes the
set union of two partitions, and create_partition_by_intersection, which
computes the set intersection of two partitions. These dependent partitioning
functions have the same signature as create_partition_by_difference.

4.5 Image Partitions

Often we need to partition a region in a way compatible with an already
computed partition of another region. For example, consider a graph repre-
sented by a region of nodes and a region of edges. Assume we have chosen
a partition of the nodes PN[0], . . . , PN[k]. We will often want to partition
the edges into subregions PE[0], . . . , PE[k] such that the edges in PE[i] all
have source (or alternatively destination) nodes in PN[i]. The image and
preimage partitioning operators discussed in this section and the next provide
mechanisms for using a pointer relationship between two regions to induce a
partitioning of one region given a partitioning of the other.

The example in Figure 4.7 creates two regions. The region lr_src (line
19) has a single field FIELD_PTR of type Point<1> (line 10). Pointers between
regions are represented by points in the index space of the pointed-to region,
which in this case is lr_dst (line 20). The ptr_task (defined on lines 47-60
and called on lines 32-36) assigns pointers so that the ith element of lr_src

42 CHAPTER 4. PARTITIONING

1 void top_level_task(const Task ∗task,
2 const std::vector⟨PhysicalRegion⟩ &rgns,
3 Context ctx,
4 Runtime ∗rt)
5 {
6 Rect⟨1⟩ rec(Point⟨1⟩(0),Point⟨1⟩(100));
7 IndexSpace is = rt−⟩create_index_space(ctx,rec);
8 FieldSpace fs = rt−⟩create_field_space(ctx);
9 FieldAllocator field_allocator = rt−⟩create_field_allocator(ctx,fs);

10 FieldID fida = field_allocator.allocate_field(sizeof(int), FIELD_A);
11 assert(fida == FIELD_A);
12
13 LogicalRegion lr = rt−⟩create_logical_region(ctx,is,fs);
14
15 int init = 1;
16 rt−⟩fill_field(ctx,lr,lr,fida,&init,sizeof(init));
17
18 int num_subregions = 4;
19 Rect⟨1⟩ colors(0,num_subregions−1);
20 IndexSpace cis = rt−⟩create_index_space(ctx,colors);
21
22 int block_size = 25;
23 Transform⟨1,1⟩ transform;
24 transform[0][0] = block_size;
25 Rect⟨1⟩ extentbig(0, block_size);
26 Rect⟨1⟩ extentsmall(0,block_size−1);
27
28 IndexPartition ipbig = rt−⟩create_partition_by_restriction(ctx, is, cis, transform, extentbig);
29 IndexPartition ipsmall = rt−⟩create_partition_by_restriction(ctx, is, cis, transform, extentsmall);
30 IndexPartition ipdiff = rt−⟩create_partition_by_difference(ctx,is,ipbig,ipsmall,cis);
31
32 LogicalPartition lpdiff = rt−⟩get_logical_partition(ctx, lr, ipdiff);
33 ArgumentMap arg_map;
34 IndexLauncher sum_launcher(SUM_TASK_ID, colors, TaskArgument(NULL,0), arg_map);
35 sum_launcher.add_region_requirement(RegionRequirement(lpdiff, 0, READ_ONLY, EXCLUSIVE, lr));
36 sum_launcher.region_requirements[0].add_field(FIELD_A);
37 rt−⟩execute_index_space(ctx, sum_launcher);
38 }

Figure 4.5: Examples/Partitions/sets/sets.cc

4.5. IMAGE PARTITIONS 43

Figure 4.6: An image coloring.

points to the ith element of lr_dst.
The example creates an equal partition of lr_src on lines 29-30. The

create_partition_by_image “transfers” the partition of lr_src to the
index space is: if we think of the pointer field as a function from the source
region to the destination index space and visualize the source partition
as a coloring of the elements, then each pointer copies the color of its
source element to the element of the destination. An example (unrelated
to Figure 4.7) of taking the image of a pointer field under a partitioning of
the source region is depicted in Figure 4.6. In this abstract example, the
coloring of the elements on the region on the left is copied via the pointer
field to the elements of the index space or region on the right. Because
an element in the destination may have multiple pointers to it from the
source, elements of the destination may have multiple colors, illustratedby
the elements with two colors in Figure 4.6. Thus, in general, the partition
computed by create_partition_by_image may be aliased. It may also be
incomplete, as some elements of the destination region may have no pointers
to them at all. Because the pointer relationship is 1-1 between the source
and destination regions in the program in Figure 4.7, the partition of the
destination in this case is both disjoint and complete.

The create_partition_by_image call on line 38 takes the current con-
text, the index space to be partitioned, the source region partition, the source
region, the identity of the pointer field in the source region, and the color
space of the partition to be computed. The result is an IndexPartition of
the destination index space.

The rest of the program (lines 41-45) sums the value field of the destination
partition’s subregions (which as in other examples has the same value 1 for

44 CHAPTER 4. PARTITIONING

every element). Since the 1-1 pointer relationship copies the coloring exactly
from source to destination and the source was an equal partition, the sums
printed for each subregion are the same.

4.6 Pre-Image Partitions

Where an image partition transfers a partitioning from a pointer’s source
region to its destination, a pre-image transfers a partitioning of the destina-
tion to the source. Viewing the pointer field as a function from source to
destination, this operation is a preimage computation of that function.

The program in Figure 4.9 gives an example. As before there is a source
region and a destination index space. (Note that the source must be a region
because we need a pointer field, and only regions have fields.) The source
region has both the pointer field and the value field (lines 8-11), because
we will be summing the subregions computed by the preimage operation,
which are subregions of the source region. We do not need any fields in the
destination region in this simple example, so its field space is empty (line
13).

Line 32 creates an equal partition ip_dst of the index space is of the
destination region. The call to create_partition_by_preimage on line 35
transfers this partitioning backwards across the pointer field FIELD_PTR to
the index space of the source region. The call takes the current context, the
partition of the destination index space, the source region, the source region’s
parent (or the source region itself if it has no parent, as in this example),
the name of the pointer field in the source region, and the color space for
the computed partition.

Figure 4.8 gives an abstract example of a preimage computation. Here the
pre-existing partition is on the right, and the color of each element is copied
backwards through the pointer field to derive a coloring (a partitioning) of
the source index space. Note that because a pointer has a single source, a
preimage is always guaranteed to be a disjoint partitioning of the source (but
the partition may be incomplete—not every element of the source necessarily
has a pointer into the destination).

Returning to the program in Figure 4.9, lines 38-43 sum the elements of
the value field of each of the subregions of the source. Again in this example
the ith element of the source points to the ith element of the destination (lines
24-27 and 45-58), so the preimage operation replicates the equal partition of
the destination in the source index space. Since the value field is initialized
to 1 (lines 21-22), the sums count the number of elements of each source

4.6. PRE-IMAGE PARTITIONS 45

1 void top_level_task(const Task ∗task,
2 const std::vector⟨PhysicalRegion⟩ &rgns,
3 Context ctx,
4 Runtime ∗rt)
5 {
6 Rect⟨1⟩ rec(Point⟨1⟩(0),Point⟨1⟩(99));
7 IndexSpace is = rt−⟩create_index_space(ctx,rec);
8 FieldSpace fs1 = rt−⟩create_field_space(ctx);
9 FieldAllocator field_allocator1 = rt−⟩create_field_allocator(ctx,fs1);

10 FieldID fidptr = field_allocator1.allocate_field(sizeof(Point⟨1⟩), FIELD_PTR);
11
12 FieldSpace fs2 = rt−⟩create_field_space(ctx);
13 FieldAllocator field_allocator2 = rt−⟩create_field_allocator(ctx,fs2);
14 FieldID fidv = field_allocator2.allocate_field(sizeof(int), FIELD_VAL);
15
16 assert(fidptr == FIELD_PTR);
17 assert(fidv == FIELD_VAL);
18
19 LogicalRegion lr_src = rt−⟩create_logical_region(ctx,is,fs1);
20 LogicalRegion lr_dst = rt−⟩create_logical_region(ctx,is,fs2);
21
22 int init = 1;
23 rt−⟩fill_field(ctx,lr_dst,lr_dst,FIELD_VAL,&init,sizeof(init));
24
25 int num_subregions = 4;
26 Rect⟨1⟩ colors(0,num_subregions−1);
27 IndexSpace cis = rt−⟩create_index_space(ctx,colors);
28
29 IndexPartition ip_src = rt−⟩create_equal_partition(ctx, is ,cis);
30 LogicalPartition lp_src = rt−⟩get_logical_partition(ctx, lr_src, ip_src);
31
32 ArgumentMap arg_map;
33 IndexLauncher ptr_launcher(PTR_TASK_ID, colors, TaskArgument(NULL,0), arg_map);
34 ptr_launcher.add_region_requirement(RegionRequirement(lp_src, 0, WRITE_DISCARD, EXCLUSIVE, lr_src));
35 ptr_launcher.region_requirements[0].add_field(FIELD_PTR);
36 rt−⟩execute_index_space(ctx, ptr_launcher);
37
38 IndexPartition ip_dst = rt−⟩create_partition_by_image(ctx, is, lp_src, lr_src, FIELD_PTR, cis);
39 LogicalPartition lp_dst = rt−⟩get_logical_partition(ctx, lr_dst, ip_dst);
40
41 IndexLauncher sum_launcher(SUM_TASK_ID, colors, TaskArgument(NULL,0), arg_map);
42 sum_launcher.add_region_requirement(RegionRequirement(lp_dst, 0, READ_ONLY, EXCLUSIVE, lr_dst));
43 sum_launcher.region_requirements[0].add_field(FIELD_VAL);
44 rt−⟩execute_index_space(ctx, sum_launcher);
45 }
46
47 void ptr_task(const Task ∗task,
48 const std::vector⟨PhysicalRegion⟩ &rgns,
49 Context ctx, Runtime ∗rt)
50 {
51 const FieldAccessor⟨WRITE_DISCARD,Point⟨1⟩,1⟩ fa_ptr(rgns[0], FIELD_PTR);
52 Rect⟨1⟩ d = rt−⟩get_index_space_domain(ctx, task−⟩regions[0].region.get_index_space());
53
54 int x = 0;
55 for (PointInRectIterator⟨1⟩ itr(d); itr(); itr++)
56 {
57 fa_ptr[∗itr] = (Point⟨1⟩) x;
58 x = x + 1;
59 }
60 }

Figure 4.7: Examples/Partitions/image/image.cc

46 CHAPTER 4. PARTITIONING

Figure 4.8: An preimage coloring.

subregion, which are all equal.

4.6. PRE-IMAGE PARTITIONS 47

1 void top_level_task(const Task ∗task,
2 const std::vector⟨PhysicalRegion⟩ &rgns,
3 Context ctx,
4 Runtime ∗rt)
5 {
6 Rect⟨1⟩ rec(Point⟨1⟩(0),Point⟨1⟩(99));
7 IndexSpace is = rt−⟩create_index_space(ctx,rec);
8 FieldSpace fs1 = rt−⟩create_field_space(ctx);
9 FieldAllocator field_allocator1 = rt−⟩create_field_allocator(ctx,fs1);

10 FieldID fidptr = field_allocator1.allocate_field(sizeof(Point⟨1⟩), FIELD_PTR);
11 FieldID fidv = field_allocator1.allocate_field(sizeof(int), FIELD_VAL);
12
13 FieldSpace fs2 = rt−⟩create_field_space(ctx);
14
15 assert(fidptr == FIELD_PTR);
16 assert(fidv == FIELD_VAL);
17
18 LogicalRegion lr_src = rt−⟩create_logical_region(ctx,is,fs1);
19 LogicalRegion lr_dst = rt−⟩create_logical_region(ctx,is,fs2);
20
21 int init = 1;
22 rt−⟩fill_field(ctx,lr_src,lr_src,FIELD_VAL,&init,sizeof(init));
23
24 TaskLauncher ptr_launcher(PTR_TASK_ID, TaskArgument(NULL,0));
25 ptr_launcher.add_region_requirement(RegionRequirement(lr_src, WRITE_DISCARD, EXCLUSIVE, lr_src));
26 ptr_launcher.add_field(0,FIELD_PTR);
27 rt−⟩execute_task(ctx, ptr_launcher);
28
29 int num_subregions = 4;
30 Rect⟨1⟩ colors(0,num_subregions−1);
31 IndexSpace cis = rt−⟩create_index_space(ctx,colors);
32 IndexPartition ip_dst = rt−⟩create_equal_partition(ctx, is, cis);
33 LogicalPartition lp_dst = rt−⟩get_logical_partition(ctx, lr_dst, ip_dst);
34
35 IndexPartition ip_src = rt−⟩create_partition_by_preimage(ctx, ip_dst, lr_src, lr_src, FIELD_PTR, cis);
36 LogicalPartition lp_src = rt−⟩get_logical_partition(ctx, lr_src, ip_src);
37
38 ArgumentMap arg_map;
39 IndexLauncher sum_launcher(SUM_TASK_ID, colors, TaskArgument(NULL,0), arg_map);
40 sum_launcher.add_region_requirement(RegionRequirement(lp_src, 0, READ_ONLY, EXCLUSIVE, lr_src));
41 sum_launcher.region_requirements[0].add_field(FIELD_VAL);
42 rt−⟩execute_index_space(ctx, sum_launcher);
43 }
44
45 void ptr_task(const Task ∗task,
46 const std::vector⟨PhysicalRegion⟩ &rgns,
47 Context ctx, Runtime ∗rt)
48 {
49 const FieldAccessor⟨WRITE_DISCARD,Point⟨1⟩,1⟩ fa_ptr(rgns[0], FIELD_PTR);
50 Rect⟨1⟩ d = rt−⟩get_index_space_domain(ctx, task−⟩regions[0].region.get_index_space());
51
52 int x = 0;
53 for (PointInRectIterator⟨1⟩ itr(d); itr(); itr++)
54 {
55 fa_ptr[∗itr] = (Point⟨1⟩) x;
56 x = x + 1;
57 }
58 }

Figure 4.9: Examples/Partitions/pre_image/preimage.cc

48 CHAPTER 4. PARTITIONING

Chapter 5

Control Replication

In Legion and most other tasking models, a root task is responsible for
launching subtasks that will fill a parallel machine. We have already seen
that index launches (recall Section 2.4) can be used to compactly express
the launch of a set of n tasks, where n is usually scaled with the size of the
machine being used.

A problem arises when the number of child tasks to be launched by a
parent task is large: The amount of work the parent task needs to do to
launch all of the child tasks can itself become a serial bottleneck in the
program. In practice, it turns out that this effect does not require especially
large numbers of tasks to become noticeable. For most applications, a parent
task repeatedly launching more than 16 or 32 tasks at a time has a measurable
impact on scalability.

Control replication is Legion’s solution to this problem and a key feature
of the programming model. Almost any application with tasks that launch
a large number of subtasks will perform significantly better with control
replication.

The idea behind control replication is simple: Instead of having one copy
of the parent task launching all of the child tasks, multiple copies of the
parent task are executed in parallel, each of which launches a subset of the
child tasks. For example, if a parent tasks launches subtasks using index
launches, then control-replicating the parent tasks n times will result in all
copies of the parent task launching 1/nth of the tasks in each index launch
(using the default mapper, see below). A common pattern is to replicate
a task once per Legion process in the computation, with each replicated
instance launching the subtasks destined to execute locally on the resources
managed by that Legion runtime.

49

50 CHAPTER 5. CONTROL REPLICATION

1 void top_level_task(const Task ∗task,
2 const std::vector⟨PhysicalRegion⟩ &rgns,
3 Context ctx,
4 Runtime ∗rt)
5 {
6 Rect⟨1⟩ rec(Point⟨1⟩(0),Point⟨1⟩(99));
7 IndexSpace is = rt−⟩create_index_space(ctx,rec);
8 FieldSpace fs = rt−⟩create_field_space(ctx);
9 FieldAllocator field_allocator = rt−⟩create_field_allocator(ctx,fs);

10 FieldID fida = field_allocator.allocate_field(sizeof(int), FIELD_A);
11 assert(fida == FIELD_A);
12
13
14 LogicalRegion lr = rt−⟩create_logical_region(ctx,is,fs);
15 int num_subregions = 4;
16 Rect⟨1⟩ colors(0,num_subregions − 1);
17 IndexSpace color_is = rt−⟩create_index_space(ctx, colors);
18 IndexPartition ip = rt−⟩create_equal_partition(ctx, is, color_is);
19 LogicalPartition lp = rt−⟩get_logical_partition(ctx, lr, ip);
20
21 int init = 1;
22 rt−⟩fill_field(ctx,lr,lr,fida,&init,sizeof(init));
23
24 ArgumentMap arg_map;
25 IndexLauncher sum_launcher(SUM_TASK_ID, colors, TaskArgument(NULL,0), arg_map);
26 sum_launcher.add_region_requirement(RegionRequirement(lp, 0, READ_ONLY, EXCLUSIVE, lr));
27 sum_launcher.region_requirements[0].add_field(FIELD_A);
28 rt−⟩execute_index_space(ctx, sum_launcher);
29 }
30 int main(int argc, char ∗∗argv)
31 {
32 Runtime::set_top_level_task_id(TOP_LEVEL_TASK_ID);
33 {
34 TaskVariantRegistrar registrar(TOP_LEVEL_TASK_ID, "top_level_task");
35 registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
36 registrar.set_replicable(); // The only change from Examples/Partitions/equal/equal.cc
37 Runtime::preregister_task_variant⟨top_level_task⟩(registrar);
38 }
39 {
40 TaskVariantRegistrar registrar(SUM_TASK_ID, "sum_task");
41 registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
42 Runtime::preregister_task_variant⟨sum_task⟩(registrar);
43 }
44 return Runtime::start(argc, argv);
45 }

Figure 5.1: Examples/ControlReplication/sum/cp.cc

51

By far the most common case is that the top-level task is control-replicated
and all other tasks are not, but sometimes overall performance can be
improved by control replicating other tasks in the task hieararchy. It is
also legal to nest control-replicated tasks: control-replicated tasks can be
launched from within other control-replicated tasks.

At the program level, the use of control replication is straightforward.
Typically, the only thing that needs to be done is to notify the system that
a task is replicable, as shown in Figure 5.1, line 36. In this example, the
top-level task is marked as replicable, while the sum task (not shown) is
not. As we discuss below, not every task is replicable. Even if a task t is
potentially replicable, if it does not launch enough subtasks to make control
replication worthwhile then it will be better overall not to replicate t.

If a task is marked as replicable, then the decisions of whether to replicate
the task or not and, if the task is replicated, how to shard the work of analyzing
the subtasks across all the instances of the replicated task are made by the
mapper. The default mapper handles the case of a top-level task that is
control-replicated and subtasks are sharded evenly and to the instance of the
Legion runtime where they will execute. Anything other than this simple,
but very common, case will likely require writing some custom mapping logic.
Because the dynamic safety checks for control replication do not currently
cover every way that a task might fail to be replicable, it is possible, but
unlikely, for a task that is incorrectly marked as replicable to pass the safety
checks.

52 CHAPTER 5. CONTROL REPLICATION

Chapter 6

Coherence

Every task has associated privileges and coherence modes for each region
argument. Privileges, which declare what a task may do with its region
argument (such as reading it, writing it, or performing reductions to it),
are discussed in Section 3.1. A coherence mode declares what other tasks
may do concurrently with a region. So far we have focused on Exclusive
coherence, which is the default if no other coherence mode is specified.
Exclusive coherence means that it must appear to a task that it has exclusive
access to a region argument—all updates from tasks that precede the task
in sequential execution order must be included in the region when the task
starts executing, and no updates from tasks that come after the task in
sequential execution order can be visible while the task is running.

More precisely, the coherence mode of region argument r for a task t is
a declaration of what updates to r by t’s sibling tasks can be visible to t.
The scope of a coherence declaration for task t is always the sibling tasks of
t. Each region argument may have its own coherence declaration—not all
regions need have the same coherence mode.

Besides Exclusive coherence, there are three other coherence modes:
Atomic, Simultaneous, and Relaxed.

6.1 Atomic

An example using Atomic coherence is given in Figure 6.1. The loop on lines
19-24 launches a number of individual inc tasks, each of which increments
all the elements of its region argument by one. On line 21, we see the task
launcher declares the (single) region argument to the inc task has Atomic
coherence. Atomic coherence means that the inc task only requires that

53

54 CHAPTER 6. COHERENCE

1 void top_level_task(const Task ∗task,
2 const std::vector⟨PhysicalRegion⟩ &rgns,
3 Context ctx,
4 Runtime ∗rt)
5 {
6 Rect⟨1⟩ rec(Point⟨1⟩(0),Point⟨1⟩(99));
7 IndexSpace is = rt−⟩create_index_space(ctx,rec);
8 FieldSpace fs = rt−⟩create_field_space(ctx);
9 FieldAllocator field_allocator = rt−⟩create_field_allocator(ctx,fs);

10 FieldID fida = field_allocator.allocate_field(sizeof(int), FIELD_A);
11 assert(fida == FIELD_A);
12
13
14 LogicalRegion lr = rt−⟩create_logical_region(ctx,is,fs);
15
16 int init = 1;
17 rt−⟩fill_field(ctx,lr,lr,fida,&init,sizeof(init));
18
19 for (int i = 0; i ⟨ 10; i++) {
20 TaskLauncher inc_launcher(INC_TASK_ID, TaskArgument(&i,sizeof(int)));
21 inc_launcher.add_region_requirement(RegionRequirement(lr, READ_WRITE, ATOMIC, lr));
22 inc_launcher.add_field(0,FIELD_A);
23 rt−⟩execute_task(ctx, inc_launcher);
24 }
25
26 TaskLauncher sum_launcher(SUM_TASK_ID, TaskArgument(NULL,0));
27 sum_launcher.add_region_requirement(RegionRequirement(lr, READ_ONLY, EXCLUSIVE, lr));
28 sum_launcher.add_field(0,FIELD_A);
29 rt−⟩execute_task(ctx, sum_launcher);
30 }
31
32 void inc_task(const Task ∗task,
33 const std::vector⟨PhysicalRegion⟩ &rgns,
34 Context ctx, Runtime ∗rt)
35 {
36 int id = ∗((int ∗) task−⟩args);
37 const FieldAccessor⟨READ_WRITE,int,1⟩ fa_a(rgns[0], FIELD_A);
38 Rect⟨1⟩ d = rt−⟩get_index_space_domain(ctx,task−⟩regions[0].region.get_index_space());
39 printf("Task␣%d\n",id);
40 for (PointInRectIterator⟨1⟩ itr(d); itr(); itr++)
41 {
42 fa_a[∗itr] = fa_a[∗itr] + 1;
43 }

Figure 6.1: Examples/Coherence/atomic/atomic.cc

6.2. SIMULTANEOUS 55

sibling tasks execute atomically with respect to the region lr—as far as one
inc task is concerned, it is fine for other tasks t that modify lr to appear to
execute either before or after the inc task, provided that all of t’s updates to
lr come either before or after the inc task executes. Since the loop launches
10 inc tasks all with atomic coherence on region lr, these tasks are free to
run in any sequential order, but not in parallel (since they all write lr and
must execute atomically). The sum task (lines 26-29) is also a sibling task of
the inc tasks, but the sum tasks requires exclusive coherence for region lr.
Thus, sum must run after all of the inc tasks have completed and all of their
updates have been performed.

6.2 Simultaneous

Simultaneous coherence provides the equivalent of shared memory semantics
for a region: A task t that requests simultaneous coherence on a region r
is permitting other tasks to update r and have those updates be visible
while t is executing. Note that simultaneous coherence does not require that
multiple tasks with simultaneous coherence run at the same time and are
able to see each others updates, but that behavior is certainly allowed.

By definition simultaneous coherence permits race conditions—the pro-
gram is explicitly requesting that race conditions be permitted on the region.
Thus, another way to understand simultaneous coherence is that it notifies
the runtime system that the application itself will take care of whatever
synchronization is needed to guarantee that the tasks accessing the region
produce correct results, as the runtime will not necessarily enforce any
ordering on the accesses of two or more tasks to the region.

Like all explicit parallel programming, a program that uses simultaneous
coherence is more difficult to reason about than a program that does not.
There are legitimate reasons to use simultaneous coherence, but they are rare.
We will cover two in this manual. First, we will look at an example where
what we truly want is to exploit shared memory. While this may in some
circumstances improve performance, requiring shared memory is also less
portable. This example is most likely to be useful when tasks are extremely
fine-grain and there needs to be concurrency between tasks to fully exploit
the hardware. We have not found many such use cases in practice.

The second use case is interoperating with external programs or other
resources, where simultaneous coherence is the only safe model of data shared
with an external process. Because this case is common and important, Legion
encapsulates the most useful interoperation patterns in higher level constructs

56 CHAPTER 6. COHERENCE

1 DistributeChargeTask::DistributeChargeTask(LogicalPartition lp_pvt_wires,
2 LogicalPartition lp_pvt_nodes,
3 LogicalPartition lp_shr_nodes,
4 LogicalPartition lp_ghost_nodes,
5 LogicalRegion lr_all_wires,
6 LogicalRegion lr_all_nodes,
7 const Domain &launch_domain,
8 const ArgumentMap &arg_map)
9 : IndexLauncher(DistributeChargeTask::TASK_ID, launch_domain, TaskArgument(), arg_map,

10 Predicate::TRUE_PRED, false/∗must∗/, DistributeChargeTask::MAPPER_ID)
11 {
12 RegionRequirement rr_wires(lp_pvt_wires, 0/∗identity∗/,
13 READ_ONLY, EXCLUSIVE, lr_all_wires);
14 rr_wires.add_field(FID_IN_PTR);
15 rr_wires.add_field(FID_OUT_PTR);
16 rr_wires.add_field(FID_IN_LOC);
17 rr_wires.add_field(FID_OUT_LOC);
18 rr_wires.add_field(FID_CURRENT);
19 rr_wires.add_field(FID_CURRENT+WIRE_SEGMENTS−1);
20 add_region_requirement(rr_wires);
21
22 RegionRequirement rr_private(lp_pvt_nodes, 0/∗identity∗/,
23 READ_WRITE, EXCLUSIVE, lr_all_nodes);
24 rr_private.add_field(FID_CHARGE);
25 add_region_requirement(rr_private);
26
27 RegionRequirement rr_shared(lp_shr_nodes, 0/∗identity∗/,
28 REDUCE_ID, SIMULTANEOUS, lr_all_nodes);
29 rr_shared.add_field(FID_CHARGE);
30 add_region_requirement(rr_shared);
31
32 RegionRequirement rr_ghost(lp_ghost_nodes, 0/∗identity∗/,
33 REDUCE_ID, SIMULTANEOUS, lr_all_nodes);
34 rr_ghost.add_field(FID_CHARGE);
35 add_region_requirement(rr_ghost);
36 }

Figure 6.2: From Legion/examples/circuit/circuit_cpu.cc

described in Chapter 8 and we strongly recommend using those abstractions if
possible. These higher level abstractions are built on simultaneous coherence
and the other concepts introduced in this section.

To provide shared-memory semantics, a region for which simultaneous
coherence is requested by a task can usually have only one physical instance,
which is called the copy restriction. That is, there can be only one instance
of the data—no copies can be made—and all tasks using the region share it.
As we discuss below, Legion provides a mechanism for explicitly relaxing the
copy restriction and allowing copies of a region to be made, but the default
behavior is a single physical instance.

6.2. SIMULTANEOUS 57

Figure 6.2 gives an example of the use of simultaneous coherence from
the Legion repository that is intended specifically to exploit shared memory.
This excerpt comes from a much larger program that simulates the behavior
of an arbitrary electrical circuit, modeled as a graph of wires and nodes
where where wires connect. Here we see that the DistributeChargeTask
uses simultaneous coherence on two regions rr_shared and rr_ghost. The
electrical circuit is divided up into pieces and the simulation is carried out in
parallel for each piece of the circuit. The regions rr_shared and rr_ghost
represent regions that may alias pieces of the graph that overlap with other
pieces. The DistributeCharge task is performing reductions to these two
regions (the REDUCE_ID privilege is the identity of a reduction operator
registered with the runtime system); all the tasks from different pieces may
be performing reductions to these aliased regions in parallel. Thus, the
implementation of the task body of DistributeCharge uses atomic updates
to guarantee that no reductions are lost (not shown).

In contrast, the region rr_private is a set of nodes private to a particular
piece of the graph (not shared with any other piece); the task uses exclusive
access for this region since no other task will access it.

Because of the copy restriction, this implementation strategy, using
simultaneous coherence for multiple tasks that may reduce to the same
elements of some regions, can only be used for shared-memory CPU-based
systems. Trying to use this code on a distributed machine, or on a machine
with GPUs with their own framebuffer memories, will result in errors from
the runtime system when the program tries to copy restricted regions to
other nodes or GPU memory.

Another use of simultaneous coherence is shown in Figure 6.3. In this
example there are two tasks, a producer and a consumer, that alternate
access to a region that has simultaneous coherence. A producer task fills a
region with some values (for illustration the ith time the producer is called
it writes i to every element of the region), and a consumer task reads the
values written by the previous producer and resets the values to 0. Because
the region has simultaneous coherence, the producer and consumer tasks
synchronize: a consumer task waits until the region is filled by a producer
task, and a producer task waits until the previous consumer task has emptied
the region.

Phase barriers are a lightweight synchronization abstraction designed for
deferred execution. The name “barrier” is not meant to evoke MPI barriers,
and attempting to understand phase barriers in terms of MPI barriers will
lead to confusion. A phase barrier has four important characteristics:

58 CHAPTER 6. COHERENCE

• An operation can wait on a phase barrier; the waiting operation will
not begin execution until the phase barrier is triggered.

• An operation can arrive at a phase barrier. Every phase barrier has an
arrival count, which is the number of arrivers required to trigger the
barrier. Once triggered, all of the waiters (and any future waiters on
the same barrier) are notified. By default, the arrival count of a phase
barrier is 1.

• A phase barrier has a generation. When an operation waits on or arrives
at a barrier, it waits on or arrives at a specific generation. A phase
barrier can be advanced to a new generation, and different operations
can wait on or arrive at that generation. Generations support deferred
execution, as illustrated below. A phase barrier has 232 generations—so
a very large, but not unlimited, number.

• When a phase barrier triggers, it signals the waiters on the next
generation. For a phase barrier with arrival count 1, an arrival at
generation n causes waiters on generation n + 1 to be notified. (Realm,
the abstraction level below Legion, has its own more primitive phase
barrier type with slightly different semantics. Here we are describing
the Legion-level PhaseBarrier type.)

The final concepts we need to explain idiomatic use of simultaneous
coherence in Legion are acquire and release of regions. Acquiring a region
with simultaneous coherence tells the runtime system that it is safe to make
copies of the region’s sole physical instance: an acquire means that the task is
promising it will be the only user of the data until the region is released. It is
up to the application to use acquire and release correctly; there is no checking
done by the runtime system. An acquire removes the copy restriction on a
region, which allows an instance of the region, and therefore the task itself,
to be mapped anywhere in the system—for example on a different node or
onto an accelerator such as a GPU. A release copies all updates to the region
back to the original physical instance (i.e., if flushes all the updates) and
restores the copy restriction. In a typical use of simultaneous coherence,
phase barriers are used to ensure that the acquires and releases of the region
are properly synchronized.

In Figure 6.3, the structure of the loop from lines 18-62 is alternating
producer and consumer tasks. There are two phase barriers, called even and
odd (lines 15-16). The odd barrier is used by a producer task to wait for the
preceding consumer task to finish. The even barrier is used by a consumer
task to wait for the preceding producer to finish.

6.2. SIMULTANEOUS 59

1 void top_level_task(const Task ∗task,
2 const std::vector⟨PhysicalRegion⟩ &rgns,
3 Context ctx,
4 Runtime ∗rt)
5 {
6 Rect⟨1⟩ rec(Point⟨1⟩(0),Point⟨1⟩(99));
7 IndexSpace is = rt−⟩create_index_space(ctx,rec);
8 FieldSpace fs = rt−⟩create_field_space(ctx);
9 FieldAllocator field_allocator = rt−⟩create_field_allocator(ctx,fs);

10 FieldID fida = field_allocator.allocate_field(sizeof(int), FIELD_A);
11 assert(fida == FIELD_A);
12
13 LogicalRegion lr = rt−⟩create_logical_region(ctx,is,fs);
14
15 PhaseBarrier odd = rt−⟩create_phase_barrier(ctx,1);
16 PhaseBarrier even = rt−⟩create_phase_barrier(ctx,1);
17
18 for (int i = 0; i ⟨ 10; i++) {
19 PhaseBarrier odd_next = rt−⟩advance_phase_barrier(ctx,odd);
20 PhaseBarrier even_next = rt−⟩advance_phase_barrier(ctx,even);
21
22 /∗ Producer task ∗/
23 AcquireLauncher al_producer(lr,lr);
24 al_producer.add_field(FIELD_A);
25 if (i ⟩ 0)
26 al_producer.add_wait_barrier(odd_next);
27 rt−⟩issue_acquire(ctx,al_producer);
28
29 TaskLauncher producer_launcher(PRODUCER_TASK_ID, TaskArgument(&i,sizeof(int)));
30 producer_launcher.add_region_requirement(RegionRequirement(lr, WRITE_DISCARD, SIMULTANEOUS, lr));
31 producer_launcher.add_field(0,FIELD_A);
32 rt−⟩execute_task(ctx, producer_launcher);
33
34 ReleaseLauncher rl_producer(lr,lr);
35 rl_producer.add_field(FIELD_A);
36 rl_producer.add_arrival_barrier(even);
37 rt−⟩issue_release(ctx,rl_producer);
38
39 /∗ Consumer task ∗/
40 AcquireLauncher al_consumer(lr,lr);
41 al_consumer.add_field(FIELD_A);
42 al_consumer.add_wait_barrier(even_next);
43 rt−⟩issue_acquire(ctx,al_consumer);
44
45 TaskLauncher consumer_launcher(CONSUMER_TASK_ID, TaskArgument(NULL,0));
46 consumer_launcher.add_region_requirement(RegionRequirement(lr, READ_WRITE, SIMULTANEOUS, lr));
47 consumer_launcher.add_field(0,FIELD_A);
48 rt−⟩execute_task(ctx, consumer_launcher);
49
50 ReleaseLauncher rl_consumer(lr,lr);
51 rl_consumer.add_field(FIELD_A);
52 rl_consumer.add_arrival_barrier(odd);
53 rt−⟩issue_release(ctx,rl_consumer);
54
55 odd = odd_next;
56 even = even_next;
57 printf("Iteration␣%d␣of␣top␣level␣task.\n",i);
58 }
59 printf("Deallocating␣phase␣barriers.\n");
60 rt−⟩destroy_phase_barrier(ctx,odd);
61 rt−⟩destroy_phase_barrier(ctx,even);
62 }

Figure 6.3: Examples/Coherene/simultaneous/sim.cc

60 CHAPTER 6. COHERENCE

At the top of the loop the phase barriers are advanced to the next
generation (lines 19-20). Because triggering a phase barrier in a generation
signals waiters on the next generation, both the current and next generations
are used by the tasks in the current iteration of the loop. Executing the
producer task consists of three phases: first an acquire launcher is used and
then executed to acquire coherence on the region lr. An acquire launcher
acquires a set of fields of a region and can optionally wait on or arrive at
phase barriers; in this case the launcher waits on the next generation of the
odd phase barrier except in the first iteration of the loop (lines 23-27). We
then construct a task launcher and execute the producer task (lines 29-32).
Finally, a release launcher is constructed that releases coherence on lr and
arrives at the current generation of the even phase barrier (lines 34-37).

The three phases for the consumer task (acquiring coherence on lr,
executing the consumer task, and releasing coherence on lr) are similar,
with the roles of the odd and even phase barriers reversed (lines 40-53).

When this program is executed, note that the ten iterations of the main
loop likely complete before any of the operations in the loop body execute
(examine the order of printf’s from the top-level loop and the producer
and consumer tasks). Thus, the entire chain of dependencies between the
different producers, consumers, acquires, and releases may be constructed
before any of that work is done. Allowing the runtime to defer large amounts
of work depends on having unique names for the synchronization operations
used in different iterations of the loop with different tasks, which is the
purpose of the generation property of phase barriers.

Finally, note that if we simply replaced simultaneous coherence by ex-
clusive coherence the example could be dramatically simplified to just the
two task launches in the loop body, removing all operations to acquire and
release and operate on phase barriers. In a self-contained Legion program
there is usually little reason to add the extra complexity of simultaneous
coherence, except in the case of data shared between Legion and an external
process where such semantics are really required.

6.2.1 Simple Cases of Simultaneous Coherence

The example in Figure 6.3 is actually a bit too simple to require the use of
phase barriers and acquire/release. The example in
Examples/Coherence/simultaneous/simultaneous_simple gives another
version of the same program with the same behavior using simultaneous
coherence with the phase barriers and acquire/release operations stripped
out. The reason this example works is that when there are only sibling tasks

6.3. RELAXED 61

that use simultaneous coherence, the Legion runtime is still able to deliver
correct semantics without explicit synchronization: If the sibling tasks use
the same instance of the data and run in parallel, the desired semantics is
achieved, but if they use different instances of the region then the runtime
serializes the tasks and ensures the results of the first task are visible to the
second task by copying the final contents of the instance used by the first
task to the instance used by the second task. In this simple situation, the
Legion runtime detects automatically that the copy restriction is not needed
because there is always a single instance in use. The need for application
synchronization arises when tasks have no well-defined default execution
order when using simultaneous coherence, such as both a parent task and its
subtasks using simultaneous coherence on the same region or a task sharing
a region with an external process—in these cases the runtime enforces the
copy restriction.

Thus, while there are simple cases where synchronization is unnecessary
even in the presence of simultaneous coherence, in general simultaneous
coherence does require explicit application synchronization, and the use of
phase barriers and acquire/release is the recommended approach to providing
that synchronization.

6.3 Relaxed
The design of Legion includes one other coherence mode, Relaxed. Relaxed
coherence tells the runtime system that the application will handle all aspects
of the correct use of data—there is no checking of any kind and all runtime
support is disabled, allowing the application to do whatever it wants with the
data, at the cost of the application being entirely responsible for the coherence
of the data. We discourage the use of relaxed coherence in application code.

62 CHAPTER 6. COHERENCE

Chapter 7

Mapping

The Legion mapper interface is a key part of the Legion programming system.
Through the mapping interface applications can control most decisions that
impact application performance. The philosophy is that these choices are
better left to applications rather than using hard-wired heuristics in Legion
that attempt to “do the right thing” in every situation. The few performance
heuristics that are included in Legion are associated with low levels of the
system where there is no good way to expose those choices to the application.
For everything else applications can set the policies.

This design resulted from our own past experience with systems where
built-in performance heuristics did not behave as we desired and there was
no recourse to override those decisions. While Legion does allows experts
to squeeze every last bit of performance from a system, it is important to
realize that doing so potentially requires understanding and setting a wide
variety of parameters exposed in the mapping interface. This level of control
can be overwheling at first to users who are not used to considering all the
possible dimensions that influence performance in complex, distributed and
heterogeneous systems.

To help users write initial versions of their applications without needing
to concern themselves with tuning the performance knobs exposed by the
mapper interface, Legion provides a default mapper. The default mapper
implements the Legion mapper API (like any other mapper) and provides
a number of heuristics that can provide reasonably performant, or at least
correct, initial settings. A good way to think about the default mapper is
that it is the version of Legion with built-in heuristics that allows casual
users to write Legion applications and allows experts to start quickly on a
new application. It is, however, unreasonable to expect the default mapper

63

64 CHAPTER 7. MAPPING

to provide excellent performance, and in particular assuming that the perfor-
mance of an application using the default mapper is even an approximation of
the performance that could be achieved with a custom mapper is a mistake.

We will use several examples from the default mapper to illustrate how
mappers are constructed. We will also describe where possible the heuristics
that the default mapper employs to achieve reasonable performance. Because
the default mapper uses generic heuristics with no specific knowledge of the
apllication, it is almost certain to make poor decisions at least some of the
time. Performance benchmarking using only the default mapper is strongly
discouraged, while using custom application-specific mappers is encouraged.

It is likely that the moment when you are dissatisfied with the heuristics
in the default mapper will come sooner rather than later. At that point
the information in this chapter will be necessary for you to write your own
custom mapper. In practice, our experience has been that in many cases
all that is necessary is to replace a small number of policies in the default
mapper that are a poor fit for the application.

7.1 Mapper Organization
The Legion mapper interface is an abstract C++ class that defines a set of
pure virtual functions that the Legion runtime invokes as callbacks for making
performance-related decisions. A Legion mapper is a class that inherits from
the base abstract class and provides implementations of the associated pure
virtual methods.

A callback is just a function pointer—when the runtime system calls a
mapper function, it is said to have “invoked the callback”. Callbacks are
a commomly-used mechanism in software systems for parameterizing some
specific functionality; in our case mappers parameterize the performance
heuristics of the Legion runtime system. There are a few general things to
keep in mind about mappers and callbacks:

• The runtime may invoke callbacks in an unpredictable order. While
multiple callbacks associated with a single instance of a Legion object,
such as a task, will happen in a specific order for that task, other
callbacks for other operations may be interleaved.

• Depending on the synchronization model selected (see Section 7.1.2),
mappers may have a degree of concurrency between mapper callbacks.

• Since mappers are C++ objects, they can have arbitrary internal
state. For example, it may be useful to maintain performance or load-

7.1. MAPPER ORGANIZATION 65

balancing statistics that inform mapping decisions. However, state
updates done by a mapper must take into account the unpredictable
order in which callbacks are invoked as well any issues of concurrent
access to mapper data structures.

7.1.1 Mapper Registration

After the Legion runtime is created, but before the application begins, mapper
objects can be registered with the runtime. Figure 7.1 gives a small example
registering a custom mapper.

To register CustomMapper objects, the application adds the mapper
callback function by invoking the Runtime::add_registration_callback
method, which takes as an argument a function pointer to be invoked. The
function pointer must have a specific type, taking as arguments a Machine
object, a Runtime pointer, and a reference to an STL set of Processor
objects. The call can be invoked multiple times to record multiple callback
functions (e.g., to register multiple custom mappers, perhaps for different
libraries). All callback functions must be added prior to the invocation of
the Runtime::start method. We recommend that applications include the
registration method as a static method on the mapper class (as in Figure 7.1)
so that it is closely coupled to the custom mapper itself.

Before invoking any of the registration callback functions, the runtime
creates an instance of the default mapper for each processor of the system.
The runtime then invokes the callback functions in the order they were added.
Each callback function is invoked once on each instance of the Legion runtime.
For multi-process jobs, there will be one copy of the Legion runtime per
process and therefore one invocation of each callback per process. The set
of processors passed into each registration callback function will be the set
of application processors that are local to the process1, thereby providing
a registration callback function with the necessary context to know which
processors it will create new custom mappers for. If no callback functions
are registered then the only mappers that will be available are instances of
the default mapper associated with each application processor.

Upon invocation, the registration callbacks should create instances of
custom mappers and associate them with application processors. This
step can be done through one of two runtime mapper calls. The mapper
can replace the default mappers (always registered with MapperID 0) by

1Mappers cannot be associated with utility processors, and therefore utility processors
are not included in the set.

66 CHAPTER 7. MAPPING

1 void top_level_task(const Task ∗task,
2 const std::vector⟨PhysicalRegion⟩ ®ions,
3 Context ctx,
4 Runtime ∗runtime)
5 {
6 printf("Running␣top␣level␣task...\n");
7 }
8
9 class CustomMapperA : public DefaultMapper {

10 public:
11 CustomMapperA(MapperRuntime ∗rt, Machine m, Processor p)
12 : DefaultMapper(rt, m, p) { }
13 public:
14 static void register_custom_mappers(Machine machine, Runtime ∗rt,
15 const std::set⟨Processor⟩ &local_procs);
16 };
17
18 /∗static∗/
19 void CustomMapperA::register_custom_mappers(Machine machine, Runtime ∗rt,
20 const std::set⟨Processor⟩ &local_procs)
21 {
22 printf("Replacing␣default␣mappers␣with␣custom␣mapper␣A␣on␣all␣processors...\n");
23 MapperRuntime ∗const map_rt = rt−⟩get_mapper_runtime();
24 for (std::set⟨Processor⟩::const_iterator it = local_procs.begin();
25 it != local_procs.end(); it++)
26 {
27 rt−⟩replace_default_mapper(new CustomMapperA(map_rt, machine, ∗it), ∗it);
28 }
29 }
30
31 class CustomMapperB : public DefaultMapper {
32 public:
33 CustomMapperB(MapperRuntime ∗rt, Machine m, Processor p)
34 : DefaultMapper(rt, m, p) { }
35 public:
36 static void register_custom_mappers(Machine machine, Runtime ∗rt,
37 const std::set⟨Processor⟩ &local_procs);
38 };
39
40 /∗static∗/
41 void CustomMapperB::register_custom_mappers(Machine machine, Runtime ∗rt,
42 const std::set⟨Processor⟩ &local_procs)
43 {
44 printf("Adding␣custom␣mapper␣B␣for␣all␣processors...\n");
45 MapperRuntime ∗const map_rt = rt−⟩get_mapper_runtime();
46 for (std::set⟨Processor⟩::const_iterator it = local_procs.begin();
47 it != local_procs.end(); it++)
48 {
49 rt−⟩add_mapper(1/∗MapperID∗/, new CustomMapperA(map_rt, machine, ∗it), ∗it);
50 }
51 }
52
53 int main(int argc, char ∗∗argv)
54 {
55 Runtime::set_top_level_task_id(TOP_LEVEL_TASK_ID);
56 {
57 TaskVariantRegistrar registrar(TOP_LEVEL_TASK_ID, "top_level_task");
58 registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
59 Runtime::preregister_task_variant⟨top_level_task⟩(registrar);
60 }
61 Runtime::add_registration_callback(CustomMapperA::register_custom_mappers);
62 Runtime::add_registration_callback(CustomMapperB::register_custom_mappers);
63
64 return Runtime::start(argc, argv);
65 }

Figure 7.1: Examples/Mapping/registration/registration.cc

7.1. MAPPER ORGANIZATION 67

calling Runtime::replace_default_mapper, which is the only way to re-
place the default mappers. Alternatively, the registration callback can use
Runtime::add_mapper to register a mapper with a new MapperID. Both the
Runtime::replace_default_mapper and the Runtime::add_mapper meth-
ods support an optional processor argument, which tells the runtime to
associate the mapper with a specific processor. If no processor is specified,
the mapper is associated with all processors on the local node. The choice
between whether one mapper object should handle a single application pro-
cessor’s mapping decisions or one mapper object handling mapping decisions
for all application processors on a node is mapper-specific. Legion supports
both use cases and it is up to custom mappers to make the best choice. From
a performance perspective, the best choice is likely to depend on the mapper
synchronization model (see Section 7.1.2).

Note that the mapper calls require a pointer to the MapperRuntime, such
as on lines 27 and 49 of Figure 7.1. The mapper runtime provides the
interface for mapper calls to call back into the runtime to acquire access to
different physical resources. We will see examples of the use of the mapper
runtime throughout this chapter.

7.1.2 Synchronization Model

Within an instance of the Legion runtime there are often several threads
performing the analysis necessary to advance the execution of an application.
If some threads are performing work for operations owned by the same
mapper, it is possible that they will attempt to invoke mapper calls for the
same mapper object concurrently. For both productivity and correctness
reasons, we do not want users to be responsible for making their mappers
thread-safe. Therefore we allow mappers to specify a synchronization model
that the runtime follows when concurrent mapper calls are made.

Each mapper object can specify its synchronization model via the get_mapper_sync_model
mapper call. The runtime invokes this method exactly once per mapper
object immediately after the mapper is registered with the runtime. Once
the synchronization model has been set for a mapper object it cannot be
changed. Currently three synchronization models are supported:

• Serialized Non-Reentrant. Calls to the mapper object are serialized
and execute atomically. If the mapper calls out to the runtime and the
mapper call is preempted, no other mapper calls can be invoked by the
runtime. This synchronization model conforms to the original version
of the Legion mapper interface.

68 CHAPTER 7. MAPPING

• Serialized Reentrant. At most one mapper call executes at a time.
However, if a mapper call invokes a runtime method that preempts the
mapper call, the runtime may execute another mapper call or resume
a previously blocked mapper call. It is up to the user to handle any
changes in internal mapper state that might occur while a mapper call
is preempted (e.g., the invalidation of STL iterators to internal mapper
data structures).

• Concurrent. Mapper calls to the same mapper object can proceed
concurrently. Users can invoke the lock_mapper and unlock_mapper
calls to perform their own synchronization of the mapper. This synchro-
nization model is particularly useful for mappers that simply return
static mapping decisions without changing internal mapper state.

The mapper synchronization offers mappers tradeoffs between mapper
complexity and performance. The default mapper uses the serialized reentrant
synchronization model as it offers a good trade-off between programmability
and performance.

7.1.3 Machine Interface

All mappers are given a Machine object to enable introspection of the
hardware on which the application is executing. The Machine object is
defined by Realm, Legion’s low-level portability layer (see realm/machine.h).

There are two interfaces for querying the machine object. The old interface
contains methods such as get_all_processors and get_all_memories.
These methods populate STL data structures with the appropriate names
of processors and memories. We strongly discourage using these methods
as they are not scalable on large architectures with tens to hundreds of
thousands of processors or memories.

The recommended, and more efficient and scalable, interface is based on
queries, which come in two types: ProcessorQuery and MemoryQuery. Each
query is initially given a reference to the machine object. After initialization
the query lazily materializes the (entire) set of either processors or memories
of the machine. The mapper applies filters to the query to reduce the set
to processors or memories of interest. These filters can include specializing
the query to the local node using local_address_space, to one kind of
processors with the only_kind method, or by requesting that the processor
or memory have a specific affinity to another processor or memory with the
has_affinity_to method. Affinity can either be specified as a maximum
bandwidth or a minimum latency. Figure 7.2 shows how to create a custom

7.2. MAPPING TASKS 69

mapper that uses queries to find the local set of processors with the same
processor kind as and the memories with affinities to the local mapper
processor. In some cases, these queries are still expensive, so we encourage
the creation of mappers that memoize the results of their most commonly
invoked queries to avoid duplicated work.

7.2 Mapping Tasks
There are a number of different kinds of operations with mapping callbacks,
but the core of the mapping interface, and the parts of mappers that users
will most commonly customize, are the callbacks for mapping tasks. When a
task is launched it proceeds through a pipeline of mapping callbacks. The
most important pipeline stages are:

1. select_task_options

2. select_sharding_functor (for control-replicated tasks)

3. slice_task (for index launches)

4. select_tasks_to_map (tasks remain in this stage until selected for
mapping)

5. map_task

Stages 2 and 3 do not apply to every task, and tasks may repeat stage 4 any
number of times depending on the implementation of select_tasks_to_map.

After discussing these five components of the task mapping pipeline, we
discuss a few other topics relevant to task mapping: allocating new physical
instances, postmapping of tasks, virtual mappings, and profiling requests.

7.2.1 Controlling Task Mapping

select_task_options is the first callback for mapping tasks. It is invoked
for every task t exactly once in the Legion process where t is launched. The
signature of the function is:

1 virtual void select_task_options(const MapperContext ctx,
2 const Task& task,
3 TaskOptions& output) = 0;

The purpose of the callback is to set fields of the output object. All of
the fields have defaults, so none are required to be set by the callback
implementation. This callback comes first because the fields of TaskOptions
control the rest of the mapping process for the task.

70 CHAPTER 7. MAPPING

1 class MachineMapper : public DefaultMapper {
2 public:
3 MachineMapper(MapperRuntime ∗rt, Machine m, Processor p);
4 public:
5 static void register_machine_mappers(Machine machine, Runtime ∗rt,
6 const std::set⟨Processor⟩ &local_procs);
7 };
8
9 MachineMapper::MachineMapper(MapperRuntime ∗rt, Machine m, Processor p)

10 : DefaultMapper(rt, m, p)
11 {
12 // Find all processors of the same kind on the local node
13 Machine::ProcessorQuery proc_query(m);
14 // First restrict to the same node
15 proc_query.local_address_space();
16 // Make it the same processor kind as our processor
17 proc_query.only_kind(p.kind());
18 for (Machine::ProcessorQuery::iterator it = proc_query.begin();
19 it != proc_query.end(); it++)
20 {
21 // skip ourselves
22 if ((∗it) == p)
23 continue;
24 printf("Mapper␣%s:␣shares␣" IDFMT "\n", get_mapper_name(), it−⟩id);
25 }
26 // Find all the memories that are visible from this processor
27 Machine::MemoryQuery mem_query(m);
28 // Find affinity to our local processor
29 mem_query.has_affinity_to(p);
30 for (Machine::MemoryQuery::iterator it = mem_query.begin();
31 it != mem_query.end(); it++)
32 printf("Mapper␣%s:␣has␣affinity␣to␣memory␣" IDFMT "\n", get_mapper_name(), it−⟩id);
33 }
34
35 /∗static∗/
36 void MachineMapper::register_machine_mappers(Machine machine, Runtime ∗rt,
37 const std::set⟨Processor⟩ &local_procs)
38 {
39 printf("Replacing␣default␣mappers␣with␣custom␣mapper␣A␣on␣all␣processors...\n");
40 MapperRuntime ∗const map_rt = rt−⟩get_mapper_runtime();
41 for (std::set⟨Processor⟩::const_iterator it = local_procs.begin();
42 it != local_procs.end(); it++)
43 {
44 rt−⟩replace_default_mapper(new MachineMapper(map_rt, machine, ∗it), ∗it);
45 }
46 }
47
48 int main(int argc, char ∗∗argv)
49 {
50 Runtime::set_top_level_task_id(TOP_LEVEL_TASK_ID);
51 {
52 TaskVariantRegistrar registrar(TOP_LEVEL_TASK_ID, "top_level_task");
53 registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
54 Runtime::preregister_task_variant⟨top_level_task⟩(registrar);
55 }
56 Runtime::add_registration_callback(MachineMapper::register_machine_mappers);
57
58 return Runtime::start(argc, argv);
59 }

Figure 7.2: Examples/Mapping/machine/machine.cc

7.2. MAPPING TASKS 71

• For a single task t (not an index launch), output.initial_proc is
the processor that will execute t; the default is the current processor.
The processor does not need to be local—the mapper can select any
processor in the machine model for which a variant of t exists. As we
will see, t’s target processor can be changed by subsequent stages. The
reason for choosing a target processor here is that by default t is sent
to the Legion process that manages the target processor to be mapped.

• If output.inline_task is true (the default is false) the task will be
inlined into the parent task and use the parent task’s regions. Any
needed regions that are unmapped will be remapped. Inline tasks do
not go through the rest of the task pipeline, except for the selection of
a task variant.

• If output.stealable is true then the task can be stolen for load
balancing; the default is false. A stealable task t can be stolen by
another mapper until t is chosen by select_tasks_to_map.

• As mentioned above, by default the map_task stage of the mapping
pipeline is done by the Legion process that manages the processor where
the task will execute. If output.map_locally is true (the default is
false) then map_task will be run by the current mapper. Just to
emphasize: map_locally controls where a mapping callback for the
task is run, not where the task executes. This option is mostly useful for
leaf tasks that will be sent to remote processors. In this case, making
the mapping decisions locally saves transmitting task metadata to the
remote Legion runtime.

• If valid_instances is set to false, then the task will not recieve a
list of the currently valid instances of regions in subsequent calls to
request_valid_instances, which saves some runtime overhead. This
setting is useful if the task will never use a currently valid region
instance, such as when all the regions of an inner task will be virtually
mapped.

• Setting replicate_default to true turns on replication of single tasks
in a control-replication context, which means that the task will be
executed separately in every Legion process participating in the repli-
cation of the parent task. The default setting is false; in this case
only one instance of a single task with a control-replicated parent is
executed on one processor and then the results are broadcast to the
other Legion processes. Replicating single tasks avoids the broadcast

72 CHAPTER 7. MAPPING

communication. There are some restrictions on replicated single tasks
to ensure the replicated versions all have identical behavior: the tasks
cannot have reduction-only privileges on any field, and any fields with
write privileges must use a separate instance for each replicated task.

• A task can set the priority of the parent task by modifying output.parent_priority,
if that is permitted by the mapper. The default is the parent’s current
priority. When tasks are ready to execute, tasks with higher priority
are moved to the front of the ready queue.

7.2.2 Sharding

As the name suggests, select_sharding_functor is used to select the func-
tor for sharding index task launches in control-replicated contexts. Sharding
divides the index space of the task launch into subspaces and associates each
shard with a mapper (a processor) where those tasks will be mapped. This
callback is invoked once per replicated task index launch in each replicated
context:

1 virtual void select_sharding_functor(
2 const MapperContext ctx,
3 const Task& task,
4 const SelectShardingFunctorInput& input,
5 SelectShardingFunctorOutput& output) = 0;
6
7 struct SelectShardingFunctorInput {
8 std::vector⟨Processor⟩ shard_mapping;
9 };

10
11 struct SelectShardingFunctorOutput {
12 ShardingID chosen_functor;
13 bool slice_recurse;
14 };

The shard_mapping of the input structure provides a vector of the pro-
cessors where the replicated task is running. The callback must fill in
the chosen_functor field of the output structure with the id of a shard-
ing function registered with the mapper at startup. The callback can set
slice_recurse to indicate whether or not the index subspaces chosen by
the sharding functor should be recursively sharded on the destination proces-
sor. The same sharding functor must be selected in every control-replicated
context, which will be checked by the runtime when in debug mode.

7.2.3 Slicing

slice_task is called for every index launch. To make index launches efficient,

7.2. MAPPING TASKS 73

the index space of tasks is first sliced into smaller sets of tasks and each
set is sent to a destination mapper as a single object rather than sending
multiple individual tasks. The signature of slice_task is:

1 virtual void slice_task(const MapperContext ctx,
2 const Task& task,
3 const SliceTaskInput& input,
4 SliceTaskOutput& output) = 0;

The SliceTaskInput includes the index space of the task launch (field
domain_is). The index space of the shard is also included for control-
replicated tasks.

1 struct SliceTaskInput {
2 IndexSpace domain_is;
3 Domain domain;
4 IndexSpace sharding_is;
5 };

The implementation of slice_task should set the fields of SliceTaskOutput:

1 struct SliceTaskOutput {
2 std::vector⟨TaskSlice⟩ slices;
3 bool verify_correctness; // = false
4
5 struct TaskSlice {
6 public:
7 TaskSlice(void) : domain_is(IndexSpace::NO_SPACE),
8 domain(Domain::NO_DOMAIN), proc(Processor::NO_PROC),
9 recurse(false), stealable(false) { }

10 TaskSlice(const Domain &d, Processor p, bool r, bool s)
11 : domain_is(IndexSpace::NO_SPACE), domain(d),
12 proc(p), recurse(r), stealable(s) { }
13 TaskSlice(IndexSpace is, Processor p, bool r, bool s)
14 : domain_is(is), domain(Domain::NO_DOMAIN),
15 proc(p), recurse(r), stealable(s) { }
16 public:
17 IndexSpace domain_is;
18 Domain domain;
19 Processor proc;
20 bool recurse;
21 bool stealable;
22 };

The slices field is a vector of TaskSlice, each of which names a subspace
of the index space in domain_is and a destination processor proc for the
slice of tasks. The tasks of the slice can be marked as stealable, and setting
the recurse field means that slice_task will be called again by the mapper
associated with the destination processor to allow the slice to be further
subdivided before processing individual tasks.

74 CHAPTER 7. MAPPING

7.2.4 Selecting Tasks to Map

select_tasks_to_map gives the mapper control over which tasks should
be mapped and which should be sent to other processors—the initial pro-
cessor assignment set in select_task_options can be changed if desired.
At this point in the task mapping pipeline all index tasks have been ex-
panded into single tasks, and select_tasks_to_map is called by the mapper
associated with the destination process, unless map_locally was chosen in
select_task_options. The signature of the callback is:

1 virtual void select_tasks_to_map(const MapperContext ctx,
2 const SelectMappingInput& input,
3 SelectMappingOutput& output) = 0;
4 struct SelectMappingInput {
5 std::list⟨const Task∗⟩ ready_tasks;
6 };
7 struct SelectMappingOutput {
8 std::set⟨const Task∗⟩ map_tasks;
9 std::map⟨const Task∗,Processor⟩ relocate_tasks;

10 MapperEvent deferral_event;
11 };

For each task in ready_tasks of the SelectMappingInput structure, the
callback implementation can do one of three things:

• Add the task to map_tasks, in which case the task will proceed with
mapping on the assigned local processor.

• Add the task to relocate_tasks along with a new destination proces-
sor to which the task will be transferred.

• Nothing, in which case the task will remain in the ready_tasks list
for the next call to select_tasks_to_map.

If the call does not select at least one task to map or transfer, then it
must provide a MapperEvent in the field deferral_event—another call to
select_tasks_to_map will not be made until that event is triggered. Of
course, it is up to the mapper to guarantee that the event is eventually
triggered.

7.2.5 Map_Task

map_task is normally the final stage of the task mapping pipeline. This
callback selects a processor or processors for the task, maps the task’s region
arguments, and selects the task variant to use, after which the task will run
on one of the selected processors.

7.2. MAPPING TASKS 75

1 virtual void map_task(
2 const MapperContext ctx,
3 const Task& task,
4 const MapTaskInput& input,
5 MapTaskOutput& output) = 0;
6
7 struct MapTaskInput {
8 std::vector⟨std::vector⟨PhysicalInstance⟩ ⟩ valid_instances;
9 std::vector⟨unsigned⟩ premapped_regions;

10 };
11
12 struct MapTaskOutput {
13 std::vector⟨std::vector⟨PhysicalInstance⟩ ⟩ chosen_instances;
14 std::vector⟨std::vector⟨PhysicalInstance⟩ ⟩ source_instances;
15 std::vector⟨Memory⟩ output_targets;
16 std::vector⟨LayoutConstraintSet⟩ output_constraints;
17 std::set⟨unsigned⟩ untracked_valid_regions;
18 std::vector⟨Memory⟩future_locations;
19 std::vector⟨Processor⟩ target_procs;
20 VariantID chosen_variant; // = 0
21 TaskPriority task_priority; // = 0
22 TaskPriority profiling_priority;
23 ProfilingRequest task_prof_requests;
24 ProfilingRequest copy_prof_requests;
25 bool postmap_task; // = false
26 };

The input structure contains a vector of vector of valid instances: each
element of the vector is a vector of instances that hold valid data for the
corresponding region requirement. The premapped_regions is a vector of
indices of region requirements that are already satisfied and do not need to
be mapped by the callback.

The callback must fill in the following fields of the output structure:

• target_procs is a vector of processors. All processors must be on the
same node and of the same kind (e.g., all LOCs or all TOCs). The
runtime will execute the task on the first processor in the vector that
becomes available.

• chosen_variant is the VariantID of a variant of the task. The chosen
variant must be compatible with the chosen processor kind.

• For each region requirement, the input structure has a vector of valid
instances of the region in the same order as region requirements are
added to the task launcher. The entry of the chosen_instances field
should be filled either with one or more instances from the corre-
ponding entry of valid_instances, or the mapper can add newly
created instances. A new instance is created by the runtime call
create_physical_instance, which, in addition to other arguments,

76 CHAPTER 7. MAPPING

takes a target memory in which the instance should be created and a
vector of logical regions—physical instances can be created that hold
the data of multiple logical regions. If new physical regions are created,
the mapper calls select_task_sources to choose existing instances
to be the source of data to fill those new instances (see below).

• For any regions that are strictly output regions (e.g, with WRITE_DISCARD
privileges) where no input data will be loaded, the callback must fill
in the output_targets with a memory for the corresponding region
requirement. These memories must be visible to the selected proces-
sor(s).

• The callback should set a memory that will hold each future produced
by the task in future_locations.

• Normally the runtime system will retain regions with valid data even if
no tasks are known that will use those regions at the time the task fin-
ishes. This policy can lead to an accumulation of read-only regions that
are never garbage colleted (since read-only regions are not invalidated
by any write operations). This policy can be controlled by specifying
a set of indices of read-only regions in untracked_valid_regions—
these instances will be marked for garbage collection after the task is
complete.

• Optionally the task may request that the postmap_task be invoked
for this task once mapping is complete; see Section 7.2.8.

7.2.6 Creating Physical Instances

New phyiscal instances are created by the runtime call create_physical_instance:
1 bool MapperRuntime::create_physical_instance(
2 MapperContext ctx, Memory target_memory,
3 const LayoutConstraintSet &constraints,
4 const std::vector⟨LogicalRegion⟩ ®ions,
5 PhysicalInstance &result,
6 bool acquire, GCPriority priority,
7 bool tight_bounds, size_t ∗footprint,
8 const LayoutConstraint ∗∗unsat) const

Besides the standard runtime context, the arguments to this function are:
• The target_memory is the memory where the instance will be created.

• The constraints specify the layout constraints of the region, such as
whether it should be laid out in column-major or row-major order for
2D index spaces. Layout constraints are discussed in Section 3.4.

7.2. MAPPING TASKS 77

• The regions field is a vector of logical regions, all of which should be
included in the created instance. The ability to have more than one
logical region in an instance allows for colocation of data from multiple
regions.

• The result field holds the newly created instance after the call returns;
if successful the function returns true.

• If tight_bounds is true, then the call will select the most specific
(tightest) solution to the constraints, if more than one solution is
possible. Otherwise, the runtime is free to pick any valid solution.

• footprint holds the size of the allocated instance in bytes.

• unsat holds any constraints that could not be satisfied if the call fails.

The runtime function find_or_create_physical_instance provides
higher level functionality that preferentially finds an existing physical instance
satisfying some constraints or creates a new one if necessary. The default map-
per also provides higher-level functions that wrap create_physical_instance;
see default_create_custom_instances for an example.

7.2.7 Selecting Sources for New Physical Instances

When a new physical instance is created, if its contents may be read the
mapper callback select_task_sources will be invoked to pick a source of
data for the instance:

1 virtual void select_task_sources(const MapperContext ctx,
2 const Task& task,
3 const SelectTaskSrcInput& input,
4 SelectTaskSrcOutput& output) = 0;
5
6 struct SelectTaskSrcInput {
7 PhysicalInstance target;
8 std::vector⟨PhysicalInstance⟩ source_instances;
9 unsigned region_req_index;

10 };
11
12 struct SelectTaskSrcOutput {
13 std::deque⟨PhysicalInstance⟩ chosen_ranking;
14 };

An implementation of this callback fills in chosen_ranking with a queue of in-
stances selected from source_instances, most preferred instance first. The
default mapper, for example, ranks instances in order of bandwidth between
the source instance and the target memory—see default_policy_select_target_memory
in default_mapper.cc.

78 CHAPTER 7. MAPPING

Despite its name, this callback is also used for other operations that
create new physical instances, such as copy operations.

7.2.8 Postmapping

The callback postmap_task is called only if requested by map_task (see
Section 7.2.5). The purpose of this callback is to allow additional copies of
regions updated by a task to be made once the task has finished. As input
the callback is given the mapped instances for each region requirement as
well as the valid instances. The callback should fill in chosen_instances
with a vector for each region requirement of additional copies to be made;
possible sources of these copies are specified by source_instances.

1 virtual void postmap_task(
2 const MapperContext ctx,
3 const Task& task,
4 const PostMapInput& input,
5 PostMapOutput& output) = 0;
6
7 struct PostMapInput {
8 std::vector⟨std::vector⟨PhysicalInstance⟩ ⟩ mapped_regions;
9 std::vector⟨std::vector⟨PhysicalInstance⟩ ⟩ valid_instances;

10 };
11
12 struct PostMapOutput {
13 std::vector⟨std::vector⟨PhysicalInstance⟩ ⟩ chosen_instances;
14 std::vector⟨std::vector⟨PhysicalInstance⟩ ⟩ source_instances;
15 };

7.2.9 Using Virtual Mappings

A useful optimization is to use virtual mapping for a logical region argument
that a task does not use itself but only passes as an argument to a subtask.
A virtual mapping is just a way of recording that no physical instance will be
created for the region argument, but the name and metadata for the region
are still available so that it can be passed as an argument to subtasks.

The function PhysicalInstances::get_virtual_instance() returns a
virtual instance which can be used as the chosen physical isntance of a region
requirement. If a task variant is marked as an inner task (meaning that
it does not access any of its regions and only passes them on to subtasks),
the default mapper will use virtual instances for all of the region arguments,
except for fields with reduction privileges, for which the Legion runtime
always requires a real physical instance to be mapped. See map_task in
default_mapper.cc.

7.3. OTHER MAPPING FEATURES 79

7.3 Other Mapping Features

Custom policies for mapping tasks and their region requirements are the most
common reasons for users to write their own mappers. In this section we
cover a few other mapping features that can be included in custom mappers.
This section is very incomplete; only a handful of calls relevant to other
features covered in this manual are currently included.

7.3.1 Profiling Requests

Legion has a general interface to profiling through the type ProfileRequest,
which has one public method, add_measurement(). Most Legion operations
take an optional profile request that will turn on the gathering of profiling
information for that specific operation. Most profiling is done in the Realm
low-level runtime, and running a Legion program with the command-line
flag -lg:prof will turn on profiling of many runtime operations; see https:
//legion.stanford.edu/profiling/index.html#legion-prof for an in-
troduction to using the Legion profiler. Most users only use the Legion
profiler, but ProfileRequests are available for users who want more selec-
tive control over profiling.

7.3.2 Mapping Acquires and Releases

The callback map_acquire is called for every acquire operation. Other than
the possibility of adding a profiling request, map_acquire has no options to
set.

For the callback map_release there is a policy decision to make:
1 virtual void select_release_sources(
2 const MapperContext ctx,
3 const Release& release,
4 const SelectReleaseSrcInput& input,
5 SelectReleaseSrcOutput& output) = 0;
6
7 struct SelectReleaseSrcInput {
8 PhysicalInstance target;
9 std::vector⟨PhysicalInstance⟩ source_instances;

10 };
11
12 struct SelectReleaseSrcOutput {
13 std::deque⟨PhysicalInstance⟩ chosen_ranking;
14 };

Recall that the semantics of release is that it restores the copy restriction
on a region with simultaneous coherence and any updates to the region
are flushed to the original target instance. This call allows the mapper to

https://legion.stanford.edu/profiling/index.html#legion-prof
https://legion.stanford.edu/profiling/index.html#legion-prof

80 CHAPTER 7. MAPPING

produce a ranking chosen_ranking of which of the valid instances of the
region source_instances should be the source of the copy to the target
at the point of the release.

7.3.3 Controlling Stealing

There are two callbacks for controlling how tasks are stolen. A mapper may
try to steal tasks from another mapper using select_steal_targets, and a
mapper can control which tasks it allows to be stolen using permit_steal_request.

Mappers that want to steal tasks should implement select_steal_targets.
This callback sets targets to a set of processors from which tasks can be
stolen. A blacklist is supplied as input, which records processors for which
a previous steal request failed due to insufficient work. The blacklist is
managed automatically by the runtime system, and processors are removed
from the blacklist when they acquire additional work.

1 struct SelectStealingInput {
2 std::set⟨Processor⟩ blacklist;
3 };
4
5 struct SelectStealingOutput {
6 std::set⟨Processor⟩ targets;
7 };
8
9 virtual void select_steal_targets(

10 const MapperContext ctx,
11 const SelectStealingInput& input,
12 SelectStealingOutput& output) = 0;

When a mapper receives a steal request the permit_steal_request
callback is invoked, notifying the mapper of the requesting processor (the
thief) and the tasks the mapper has available to steal, from which the
callback selects a set of stolen_tasks.

1 struct StealRequestInput {
2 Processor thief_proc;
3 std::vector⟨const Task∗⟩ stealable_tasks;
4 };
5
6 struct StealRequestOutput {
7 std::set⟨const Task∗⟩ stolen_tasks;
8 };
9

10 virtual void permit_steal_request(const MapperContext ctx,
11 const StealRequestInput& input,
12 StealRequestOutput& output) = 0;

7.4. MAPPERS INCLUDED WITH LEGION 81

7.4 Mappers Included with Legion
Several useful mappers are included in the Legion repository:

• The default mapper has already been discussed. The default mapper
is a full implementation of the legion mapping API with reasonably
heuristics for every mapping callback. The default mapper has grown
over time—as users have found cases where the default mapper did not
perform well, improvements have been made. As a result, the default
mapper is a non-trivial mapper, even though it still does not come
close to achieving optimal mappings for most complex applications.

• The null mapper is a base class that fails an assertion for every mapper
API call. The null mapper is a useful starting point when writing a
mapper from scratch, as the mapper will show exactly which API calls
need to be implemented to support the application.

• The replay mapper can be used to replay mapping decisions recorded
in a replay file by Legion Spy. The replay mapper is used mostly for
ensuring that a failed computation can be deterministically replayed
to help diagnose the source of bugs in the Legion runtime itself.

• The logging wrapper adds logging of mapping operations (which calls
were made and with what arguments) to an existing mapper. To use
the logging wrapper, replace any use of new MyMapper(...) in the
application with new LoggingWrapper(new MyMapper(...)) and run
with the command line flag -level mapper=2.

• The forwarding mapper is a base class used to build mapper wrappers;
the fowarding mapper simply forwards all mapper calls to another
mapper. The logging wrapper is written using the forwarding mapper.

82 CHAPTER 7. MAPPING

Chapter 8

Interoperation

In this chapter we briefly discuss the most common scenarios where Legion
programs need to interoperate with other systems. We will rely in this
chapter on examples from the legion/examples directory in the Legion
repository.

8.1 MPI
Legion has well-developed support for interoperation with MPI. The essentials
of the approach are:

• The top-level Legion task is control-replicated, with the number of
shards equal to the number of ranks of MPI.

• Legion and MPI time-slice the machine: One of MPI or Legion is
running at any given time, while the other runtime waits.

• Data can be shared between MPI and Legion by attaching an MPI
buffer as a region with simultaneous coherence (with the correct layout
constraint to ensure the buffer contents are interpreted correctly by
Legion). The data can be moved back and forth between a shard of
the top-level task and the corresponding MPI rank using the producer-
consumer synchronization discussed in Section 6.2.

MPI interoperation is illustrated in legion/examples/mpi_with_ctrl_repl/mpi_with_ctrl_repl.cc:
1 MPILegionHandshake handshake;
2 ...
3 // This is the preferred way of using handshakes in Legion
4 IndexLauncher worker_launcher(WORKER_TASK_ID, launch_bounds, TaskArgument(NULL, 0), args_map);
5 // We can use our handshake as a phase barrier

83

84 CHAPTER 8. INTEROPERATION

6 // Record that we will wait on this handshake
7 worker_launcher.add_wait_handshake(handshake);
8 // Advance the handshake to the next version
9 handshake.advance_legion_handshake();

10 // Then record that we will arrive on this version
11 worker_launcher.add_arrival_handshake(handshake);
12 // Launch our worker task
13 // No need to wait for anything
14 runtime−⟩execute_index_space(ctx, worker_launcher);
15

In this excerpt, we see that the synchronization between MPI and Legion is
wrapped in a MPILegionHandshake object (line 1). The handshake encapsu-
lates a phase barrier and is used similarly (see Section 6.2), but a handshake
also knows how to work with MPI. An index task launcher is built to run
the Legion-side work (line 4) and its execution is deferred until the MPI
side signals it is done running (line 7). Just like a phase barrier, handshakes
have generations so that they can be reused multiple times, typically across
iterations of a loop. The handshake is advanced to the next generation
(line 9) and when the index tasks are finished the (new generation of the)
handshake is signaled to restart the MPI side (line 11).

The MPI side of the interface is symmetric. From the same example:

1 for (int i = 0; i ⟨ total_iterations; i++)
2 {
3 printf("MPI␣Doing␣Work␣on␣rank␣%d\n", rank); // MPI work goes here
4 if (strict_bulk_synchronous_execution)
5 MPI_Barrier(MPI_COMM_WORLD);
6 // Perform a handoff to Legion, this call is
7 // asynchronous and will return immediately
8 handshake.mpi_handoff_to_legion();
9 ..

10 // Wait for Legion to hand control back,
11 // This call will block until a Legion task
12 // running in this same process hands control back
13 handshake.mpi_wait_on_legion();
14 if (strict_bulk_synchronous_execution)
15 MPI_Barrier(MPI_COMM_WORLD);
16 }

MPI uses the same handshake object as Legion. Note that the call to
mpi_wait_on_legion blocks until Legion arrives at the handshake; the other
arrive/wait handshake methods are asynchronous. Because the MPI side
blocks while it is waiting on Legion, it is not concerned with the generation
of the handshake, so the generation should only be advanced by the Legion
side to allow for deferred execution of Legion tasks.

8.2. OPENMP 85

8.2 OpenMP
Legion provides a straightfoward model of interoperation with OpenMP.
Legion tasks may use OpenMP pragmas internally to exploit multiple threads
in a single kernel. Legion tasks that use OpenMP should be mapped to OMP
processors, which can be enforced by adding an OMP constraint when the
task is registered.

Under the hood Legion interoperates with OpenMP by directly imple-
menting OpenMP functionality. Only a subset of OpenMP is supported, but
the support extends to the most commonly used features, particularly omp
parallel for.

The program legion/omp_saxpy illustrates typical uses of OpenMP in
Legion programs. In this code, the leaf tasks (the tasks that do not call other
tasks) include OpenMP pragmas. For example, in simple_blas.cc a dot
product operation is defined:

1 template ⟨⟩
2 float BlasTaskImplementations⟨float⟩::dot_task_cpu(const Task ∗task,
3 const std::vector⟨PhysicalRegion⟩ ®ions,
4 Context ctx, Runtime ∗runtime)
5 {
6 IndexSpace is = regions[1].get_logical_region().get_index_space();
7 Rect⟨1⟩ bounds = runtime−⟩get_index_space_domain(ctx, is);
8
9 const FieldAccessor⟨READ_ONLY,float,1,coord_t,

10 Realm::AffineAccessor⟨float,1,coord_t⟩ ⟩ fa_x(regions[0], task−⟩regions[0].instance_fields[0]);
11 const FieldAccessor⟨READ_ONLY,float,1,coord_t,
12 Realm::AffineAccessor⟨float,1,coord_t⟩ ⟩ fa_y(regions[1], task−⟩regions[0].instance_fields[0]);
13
14 float acc = 0;
15 #pragma omp parallel for reduction(+:acc) if(blas_do_parallel)
16 for(int i = bounds.lo[0]; i ⟨= bounds.hi[0]; i++)
17 acc += fa_x[i] ∗ fa_y[i];
18 return acc;
19 }

Note that unlike most other examples in this manual, this code uses an
AffineAccessor for the fields. Affine accessors support indexing into regions
like arrays, which is necessary in this example because the different iterations
of the loop will be split across multiple OpenMP threads—we cannot use an
iterator here, as an iterator by definition defines a sequential order of access
to the elements iterated over. The axpy task in the same file gives another
example of using OpenMP pragmas within Legion tasks.

The code for registering the tasks that use OpenMP is in simple_blas.inl:
1 {
2 dot_task_id = Runtime::generate_static_task_id();
3 TaskVariantRegistrar tvr(dot_task_id);
4 #ifdef REALM_USE_OPENMP

86 CHAPTER 8. INTEROPERATION

5 tvr.add_constraint(ProcessorConstraint(Processor::OMP_PROC));
6 #else
7 tvr.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
8 #endif
9 Runtime::preregister_task_variant⟨T, BlasTaskImplementations⟨T⟩::dot_task_cpu⟩(tvr, "dot␣(cpu)");

10 }

This code is parameterized on whether OpenMP is to be used or not; if it is
used the processor constraint for the task is set to OMP_PROC, otherwise it is
set to LOC_PROC (i.e., CPUs).

There are a few command-line flags that affect the execution of Legion
programs using OpenMP:

• -ll:ocpus n sets the number of CPUs to be reserved for OpenMP to
n.

• -ll:othr t sets the number of threads per CPU to t.

• -ll:okindhack exposes the master OpenMP thread as a CPU proces-
sor. This flag is useful when running with -ll:cpus 0 to give an extra
processor to the OpenMP runtime; if there are some remaining CPU
tasks they can be sent to the procesor running the master OpenMP
thread using -ll:okindhack.

• -ll:onuma ensures that OpenMP cores are grouped by NUMA domain;
a warning is printed if NUMA support is not found.

• -ll:ostack m sets the OpenMP stack size to m bytes.

Finally, Legion is not compiled with OpenMP by default. To enable
OpenMP, build Legion with USE_OPENMP = 1.

8.3 HDF5
HDF5 is a standard file format for storing very large files. HDF5 is hierarchi-
cal: files can be made of groups, which can be nested, with data sets stored
at the leaves of the group structure. HDF5’s hierarchical files map well on
to Legion’s regions and subregions.

Legion provides support for reading and writing HDF5 files using logical
regions. We have already seen all of the mechanisms in Section 6.2: HDF5
files are treated as external resources that are attached to a region with
simultaneous coherence. After acquiring the region (to release the copy
restriction) copies can be made of the data; when the coherence is released
any updates are flushed back to the original region instance.

8.4. KOKKOS 87

A simple example of creating and writing checkpoints using an HDF5
file is legion/examples/attach_file. Most of the calls that manipulate
HDF5 files in this program are actually direct calls to the HDF5 library, such
as calls to H5Fcreate, H5Gcreate2, H5Gclose, H5Sclose, and H5Fclose in
generate_hdf_file. See the HDF5 documentation for the semantics of
these calls.

The place where the API intersects with HDF5 is in the use of an attach
launcher to bind a region to an HDF5 file. The relevant excerpt from this
example:

1 #ifdef LEGION_USE_HDF5
2 if(∗hdf5_file_name) {
3 // create the HDF5 file first − attach wants it to already exist
4 bool ok = generate_hdf_file(hdf5_file_name, hdf5_dataset_name, num_elements);
5 assert(ok);
6 std::map⟨FieldID,const char∗⟩ field_map;
7 field_map[FID_CP] = hdf5_dataset_name;
8 printf("Checkpointing␣data␣to␣HDF5␣file␣'%s'␣(dataset='%s')\n",
9 hdf5_file_name, hdf5_dataset_name);

10 AttachLauncher al(LEGION_EXTERNAL_HDF5_FILE, cp_lr, cp_lr);
11 al.attach_hdf5(hdf5_file_name, field_map, LEGION_FILE_READ_WRITE);
12 cp_pr = runtime−⟩attach_external_resource(ctx, al);
13 } else
14 #endif

The only differences in this code from the discussion of attach launchers
in Section 6.2 are the constant LEGION_EXTERNAL_HDF5_FILE for the ex-
ternal resource argument of the constructor on line 10 and the use of the
attach_hdf5 method with the access mode LEGION_FILE_READ_WRITE on
line 11.

HDF5 is not included in the Legion build by default. Set USE_HDF5=1
to build with HDF5 supoort. The variable HDF_ROOT can be set to the root
directory of the HDF library if needed.

8.4 Kokkos

Legion supports running Kokkos tasks as part of a Legion execution. An
example program is in the directory legion/examples/kokkos_saxpy. From
the Legion point of view, Kokkos is most useful as a processor-agnostic
portability layer for kernels, allowing the same kernel to target both GPUs
and CPUs, for example. In Kokkos, the parameterization over the processor
kind is handled by C++ templates over execution spaces. Instantiating the
execution space with different arguments allows Kokkos to generate code for
GPUs, GPUs, and OpenMP.

88 CHAPTER 8. INTEROPERATION

The need to parameterize Kokkos tasks on the execution space, combined
some limitations of C++ templates, causes the implementation of Kokkos
tasks in Legion to look quite different from other task implementations we
have seen. For example, the initialization task in kokkos_saxpy is:

1 template ⟨typename execution_space⟩
2 class InitTask {
3 public:
4 static void task_body(const Task ∗task,
5 const std::vector⟨PhysicalRegion⟩ ®ions,
6 Context ctx, Runtime ∗runtime)
7 {
8 printf("kokkos(%s)␣init␣task␣on␣processor␣" IDFMT ",␣kind␣%d\n",
9 typeid(execution_space).name(),

10 runtime−⟩get_executing_processor(ctx).id,
11 runtime−⟩get_executing_processor(ctx).kind());
12
13 const float offset = ∗reinterpret_cast⟨const float ∗⟩(task−⟩args);
14
15 Rect⟨1⟩ subspace = runtime−⟩get_index_space_domain(ctx,
16 task−⟩regions[0].region.get_index_space());
17
18 AccessorRW acc(regions[0], task−⟩regions[0].instance_fields[0]);
19
20 // you can use relative indexing for your own kernels too − just make
21 // sure you do the right thing when operating on a partitioned
22 // subregion!
23 Kokkos::View⟨float ∗,
24 Kokkos::LayoutStride,
25 typename execution_space::memory_space⟩ view = acc.accessor;
26
27 size_t n_elements = subspace.hi.x − subspace.lo.x + 1;
28 Kokkos::RangePolicy⟨execution_space⟩ range(runtime−⟩get_executing_processor(ctx).kokkos_work_space(),
29 0, n_elements);
30 Kokkos::parallel_for(range,
31 KOKKOS_LAMBDA (int i) {
32 // using a relative address, but value to store
33 // is based on global index
34 // have to use a relative address!
35 view(i) = (i + subspace.lo.x) + offset;
36 });
37 }
38 };

A Kokkos task is implemented as a C++ class with a method task_body
that has the code for the task (and has the standard Legion signature for a
task). The class definition is wrapped in a template with an execution space
parameter.

Another point where Legion and Kokkos interact is in the mapping of
Legion’s region accessors into Kokkos views—for code generation in Kokkos
to work well, it is important that Kokkos views be used to access data,
though these views can often be Legion accessors cast to a suitable Kokkos

8.5. PYTHON 89

type (e.g., lines 21-25 above).
Finally, because Kokkos tasks are templated classes, registering a Kokkos

task requires additional logic to instantiate the template with the kind of
processor to be used and then registering the task_body function of the
resulting class. In kokkos_saxpy, this logic is encapsulated in the function
preregister_kokkos_task:

1 template ⟨template⟨typename⟩ class PORTABLE_KOKKOS_TASK⟩
2 void preregister_kokkos_task(TaskID task_id, const char ∗name)
3 {
4 // register a serial version on the CPU
5 {
6 TaskVariantRegistrar registrar(task_id, name);
7 registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
8 Runtime::preregister_task_variant⟨
9 PORTABLE_KOKKOS_TASK⟨Kokkos::Serial⟩::task_body ⟩(registrar, name);

10 }
11 ...
12 }
13 ...
14 preregister_kokkos_task⟨InitTask⟩(INIT_TASK_ID, "init");

Note that pregister_kokkos_task is templated on the class representing
the task to be registered.

Enable USE_Kokkos=1 to build with Kokkos support, which is not in-
cluded in Legion by default. The compile-time flags KOKKOS_ENABLE_CUDA,
KOKKOS_ENABLE_OPENMP and KOKKOS_ENABLE_SERIAL enables generation of
kernels for GPUs, OpenMP, and CPUs, respectively.

8.5 Python

Legion provides extensive interoperation support with Python through Py-
gion, which implements the Legion programming model in Python. Pygion
is essentially untyped Regent with Python syntax. All of the Legion pro-
gramming features are available through Pygion.

One of the additional features that Pygion provides is the ability to define
a Legion task in Python. This task, when run, will execute in a Python
interpreter. Given the overheads of Python, tasks written in Python (as
opposed to task simply called from Python) will generally be slow compared
to the same task written in C++ or CUDA, but for small amounts of compute
the convenience of having all of the Python facilities available outweighs
what should be a negligible performance penalty.

Python tasks run on dedicated Python processors, for which Legion
reserves a core to run the Python interpreter.

90 CHAPTER 8. INTEROPERATION

There are numerous examples of Pygion code illustrating the use of all of
the Legion features in legion/bindings/python/examples. As an example,
a simple “hello, world” program is in legion/bindings/python/examples/hello.py:

1 from pygion import task
2
3 @task
4 def main():
5 print("Hello,␣Legion!")
6
7 if __name__ == '__main__':
8 main()

More information on Pygion can be found in [SA19].

Bibliography

[BTSA12] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion:
Expressing locality and independence with logical regions. In
Supercomputing (SC), 2012.

[SA19] Elliott Slaughter and Alex Aiken. Pygion: Flexible, scalable task-
based parallelism with Python. In Parallel Applications Workshop,
Alternatives To MPI (PAW-ATM), 2019.

91

	Preface
	I Legion Runtime Tutorial
	Installation
	Regent

	Tasks
	Subtasks
	Futures
	Points, Rectangles and Domains
	Index Launches

	Regions
	Physical Instances, Region Requirements, Privileges and Accessors
	Fill Fields
	Inline Launchers
	Layout Constraints

	Partitioning
	Equal Partitions
	Partition by Field
	Partition by Restriction
	Set-Based Partitions
	Image Partitions
	Pre-Image Partitions

	Control Replication
	Coherence
	Atomic
	Simultaneous
	Simple Cases of Simultaneous Coherence

	Relaxed

	Mapping
	Mapper Organization
	Mapper Registration
	Synchronization Model
	Machine Interface

	Mapping Tasks
	Controlling Task Mapping
	Sharding
	Slicing
	Selecting Tasks to Map
	Map_Task
	Creating Physical Instances
	Selecting Sources for New Physical Instances
	Postmapping
	Using Virtual Mappings

	Other Mapping Features
	Profiling Requests
	Mapping Acquires and Releases
	Controlling Stealing

	Mappers Included with Legion

	Interoperation
	MPI
	OpenMP
	HDF5
	Kokkos
	Python

