Legate NumPy: Accelerated and Distributed Array Computing

Michael Bauer
NVIDIA
mbauer@nvidia.com

ABSTRACT

NumPy is a popular Python library used for performing array-
based numerical computations. The canonical implementation of
NumPy used by most programmers runs on a single CPU core and
only a few operations are parallelized across cores. This restriction
to single-node CPU-only execution limits both the size of data
that can be processed and the speed with which problems can be
solved. In this paper we introduce Legate, a programming system
that transparently accelerates and distributes NumPy programs
to machines of any scale and capability typically by changing a
single module import statement. Legate achieves this by translating
the NumPy application interface into the Legion programming
model and leveraging the performance and scalability of the Legion
runtime. We demonstrate that Legate can achieve state-of-the-art
scalability when running NumPy programs on machines with up to
1280 CPU cores and 256 GPUs, allowing users to prototype on their
desktop and immediately scale up to significantly larger machines.
Furthermore, we demonstrate that Legate can achieve between one
and two orders of magnitude better performance than the popular
Python library Dask when running comparable programs at scale.

CCS CONCEPTS

« Software and its engineering — Runtime environments; «
Computing methodologies — Parallel programming languages;
Distributed programming languages.

KEYWORDS

Legate, NumPy, Legion, Python, HPC, Distributed Execution, GPU,
Control Replication, Logical Regions, Task-Based Runtimes

ACM Reference Format:

Michael Bauer and Michael Garland. 2019. Legate NumPy: Accelerated
and Distributed Array Computing. In The International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC ’19), No-
vember 17-22, 2019, Denver, CO, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3295500.3356175

1 INTRODUCTION

Python has become one of the most widely used languages for data
science, machine learning, and productive numerical computing.
NumPy is its de facto standard library for array-based computation,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SC ’19, November 17-22, 2019, Denver, CO, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6229-0/19/11...$15.00
https://doi.org/10.1145/3295500.3356175

Michael Garland
NVIDIA
mgarland@nvidia.com

providing a simple and easy to use programming model whose inter-
face corresponds closely to the mathematical needs of applications.
NumPy array objects also act as a common data storage format that
can be used to share data between other Python libraries, such as
Pandas [13], SciPy [9], or h5py [4]. Thus, NumPy has become the
foundation upon which many of the most widely used data science
and machine learning programming environments are constructed.

While its interface is powerful, NumPy’s implementation is cur-
rently limited to a single-node, occasionally multi-threaded, CPU-
only execution model. As datasets continue to grow in size and
programs continue to increase in complexity, there is an ever in-
creasing need to solve these problems by harnessing computational
resources far beyond what a single CPU-only node can provide. A
user can address this need today by combining explicitly parallel
and distributed tasking systems [23] with facilities that support
GPU acceleration [11, 19]. However, such solutions require rewrites
of application code and additional programming expertise, while
often suffering from limited scalability.

To address these problems, we have developed Legate, a drop-in
replacement for NumPy that, to our knowledge, is the first pro-
gramming system that can transparently execute NumPy-based
programs with GPU acceleration across machines of any scale.
Legate is implemented on top of the Legion task-based runtime
system, which from its inception was designed to achieve high
performance and scalability on a wide range of supercomputers [2].
Legate empowers users to harness as many computing resources as
they desire, while remaining easy to use by providing an interface
identical to that of NumPy. Using Legate simply requires replacing
uses of the numpy module with uses of the legate.numpy module,
which typically requires changing only a single line of code in a
program. As a result, users can write and debug programs with lim-
ited datasets on their desktop and then immediately scale execution
to whatever class of machine is needed to process their full dataset.

To create Legate, we have developed a novel methodology for dy-
namically translating from the NumPy application interface to the
programming model of the Legion runtime system (Section 3). This
involves both a mapping of n-dimensional array objects onto the
Legion data model and a mapping of array-based operators onto the
Legion task model. To achieve efficient execution of this program,
we have developed a set of heuristics that leverage domain-specific
characteristics of the NumPy interface to make appropriate deci-
sions when mapping work and data to physical locations in the
machine (Section 4). We have also developed an approach for lever-
aging Legion’s dynamic control replication mechanism to avoid the
sequential bottleneck that would otherwise be imposed by having
a single-threaded interpreter (Section 5). Finally, we demonstrate
in Section 6 that Legate can weak-scale interesting NumPy pro-
grams out to machines with 1280 CPU cores and 256 GPUs across
32 nodes and deliver between one and two orders of magnitude

https://doi.org/10.1145/3295500.3356175
https://doi.org/10.1145/3295500.3356175

SC ’19, November 17-22, 2019, Denver, CO, USA

Michael Bauer and Michael Garland

1try: import legate.numpy as np

2 except: import numpy as np

3

4# Generate a random nxn linear system

5# for illustration purposes

6A = np.random.rand(n,n)

7b = np.random.rand(n)

8

9x = np.zeros(b.shape) # Initialize solution
10d = np.diag(A) # Extract diagonal
11R = A - np.diag(d) # Non-diagonal elements
12

13# Jacobi iteration x'*!« (b-Rx!) D7}

14 for i in range(n):

15 x = (b - np.dot(R,x)) / d

1
2
3
4
5
6
7
8
9
10
11

Given grid, an nXn array with n>2,
create multiple offset stencil views
center = grid[1:-1, 1:-1]
north = grid[@0:-2, 1:-1]

east = grid[1:-1, 2: 1]
west = grid[1:-1, 0:-2]
south = grid[2: , 1:-11]

for i in range(iters):
total = center+north+east+west+south
center[:] = 0.2xtotal

Figure 1: Program fragment for Jacobi iteration that uses
Legate if available and alternatively falls back to NumPy.

better performance than the popular Python library Dask when
executing comparable programs at scale.

2 BACKGROUND

NumPy is a Python library that provides an n-dimensional array
data type (numpy . ndarray); a variety of operators for constructing,
accessing, and transforming arrays; and a collection of algorithms
for performing common mathematical operations on vectors, matri-
ces, and tensors stored in arrays (e.g., the dot product numpy . dot).
The NumPy interface is therefore convenient for writing a variety
of numerical algorithms because its notation is broadly similar to
the mathematical operations a programmer might wish to express.
Figure 1 provides an illustrative example implementing the Jacobi
method for iterative numerical solution of linear systems.

2.1 Elements of NumPy

Every n-dimensional array in NumPy [16] is an instance of the
class ndarray, or a subclass thereof, and has an associated n-tuple
shape describing the array’s extent in each of its n dimensions. The
elements of an array are all objects of a single specified type, and
in practice elements are most commonly integer or floating point
types of a processor-supported size (e.g., 16-, 32-, and 64-bit values)
since these are the most efficient.

While it is possible to implement algorithms as explicit Python
loops over individual elements of ndarray objects, the more id-
iomatic approach is to use operations that implicitly act on entire
arrays. For example, line 11 of our Jacobi example (Figure 1) sub-
tracts one matrix from another in a single operation. The canonical
NumPy implementation in turn uses efficient implementations of
such operations (e.g., in compiled C or Fortran) to achieve reason-
able levels of performance. For some operations, NumPy implemen-
tations can even call out to high-performance BLAS libraries [6];
for example, the expression np.dot (R, x) on line 15 of Figure 1 can
be mapped to a BLAS GEMV operation. We will similarly focus on
mapping operations on entire arrays to parallel tasks in Legate.

NumPy supports a feature called broadcasting that enables op-
erators to work over arrays of different shape. For example, on
line 11 of Figure 2, NumPy will broadcast the scalar constant 0.2

Figure 2: Program fragment for a 2-D stencil computation
using multiple views of the same underlying array data.

out to the shape of the total array. While scalar broadcasting is
straightforward, the full semantics of broadcasting generalize to a
wider range of mismatched array shapes and dimensionality.
NumPy supports creating sub-arrays via indexing. NumPy sup-
ports both basic and advanced modes of sub-array indexing. Ba-
sic indexing extends Python’s standard slicing notation to multi-
dimensional arrays: the sub-array is specified by (optional) start,
stop, and/or stride arguments along each dimension. The resulting
sub-array object is a view onto the original array, meaning that it
references the same physical storage as the original array, and a
change to one array must be reflected in the other. For example,
Figure 2 computes five sub-array views onto the original grid array
on lines 3-7. These views are all read on line 10 as part of a stencil
computation and then the center view is written on line 11. All
changes written to the center sub-array must be reflected in all
the other views. Note that sub-arrays can themselves be indexed
to describe even more refined views of data and there is no limit
to the nesting depth of sub-arrays. In contrast to basic indexing
which accepts only slices, advanced indexing accepts indices in the
form of an arbitrary data structure (e.g., a Python list). The resulting
sub-array object is not a view but instead a separate copy of the data
from the original array. An important property of our approach
for translating NumPy’s interface to Legion’s data model is that it
allows us to preserve the semantics of both forms of indexing.

2.2 Legion Programming Model

Legion is a data-driven task-based runtime system [2] designed
to support scalable parallel execution of programs while retaining
their apparent sequential semantics. All long-lived data is organized
in logical regions, a tabular abstraction with rows named by multi-
dimensional coordinate indices and fields of arbitrary types along
the columns (see Figure 3). Logical regions organize data indepen-
dently from the physical layout of that data in memory, and Legion
supports a rich set of operations for dynamically and hierarchically
partitioning logical regions [27, 28]. The Legion data model is thus
ideally suited for programming models such as NumPy which must
manipulate collections of multi-dimensional arrays and support
creation of arbitrary views onto those arrays at runtime.

Legion programs decompose computations into units called tasks.
A program begins with a single top-level task, and every task is
permitted to launch any number of sub-tasks. Every task must
specify all of the logical regions it will access when it runs and what

Legate NumPy: Accelerated and Distributed Array Computing

Named fields

AfB|C

Entries in fields
addressed by <
n-dimensional

coordinate indices.

E0) [Ay By |Cy

N

Figure 3: Logical regions are a tabular data model with mul-
tiple fields (columns) where elements (rows) are accessed via
n-dimensional indices.

access privileges (e.g., read-only, read-write, or reduce) it requires
for each. Legion also supports bulk index space task launches where
the specified task is run at every point in a given index space.

Legion uses a deferred execution model where task launches
return immediately to the caller, while the launched tasks execute
asynchronously. Task return values are wrapped in futures which
can be examined or passed directly to later tasks. The Legion run-
time performs dynamic dependence analysis based on its knowledge
of the regions used by each task and their relationships through par-
titions to maintain the sequential semantics of the program,; tasks
determined to be independent can be re-ordered or executed in
parallel. This greatly simplifies the design of Legate, since the trans-
lation from NumPy to Legion can focus purely on domain-specific
semantics rather than low-level details of distributed execution.

A Legion application specifies neither where tasks will run nor
where data will be placed, and is therefore a machine-independent
specification of a computation. All machine-specific mapping deci-
sions, including both where tasks should execute as well as in which
memories physical instances of their required logical regions should
be placed, are made by Legion mapper objects separated from the ap-
plication logic [2]. Mappers may also choose between any number
of functionally equivalent task variants, which may be dynamically
registered with the runtime. Regardless of the mapping decisions,
Legion maintains the original program’s machine-independent se-
mantics by automatically inserting any data movement and/or syn-
chronization required. This allows Legate to keep the details of its
mapping logic entirely separate from the user’s application logic
while dynamically choosing the kind and location of processors on
which to run tasks.

3 TRANSLATING NUMPY TO LEGION

Legate translates the NumPy interface to Legion by associating
NumPy arrays with logical regions and converting each NumPy
operation into one or more task launches over the logical regions
that hold its array arguments. Legate adopts Legion’s deferred exe-
cution model, allowing tasks to run asynchronously with the caller
and blocking only when the Python program explicitly accesses an
array value (e.g., to evaluate a conditional). Legate launches tasks
in program order and relies exclusively on Legion’s runtime depen-
dence analysis to correctly preserve the semantics of the program

SC ’19, November 17-22, 2019, Denver, CO, USA

while finding opportunities for parallel execution. This ability to
rely on dynamic dependence analysis to preserve correctness is
particularly valuable in dynamic languages, like Python, where
comprehensive static analysis is not feasible.

Deferred execution makes two key contributions to the perfor-
mance of Legate. First, it allows the application to run ahead of the
execution of NumPy operations, assuming that it does not need to
inspect corresponding array values. This exposes additional task
parallelism that would not be available if the application had to
wait for each NumPy operation to complete before proceeding.
Additional parallelism, in turn, gives Legate the opportunity to
run computations in parallel across many processors, or allow it
to re-order the execution of tasks to help hide any long latency
data movement or synchronization operations that occur in large
distributed machines. Second, deferred execution helps hide the
cost of the dynamic dependence analysis performed by Legion.
While essential for correctness, the cost of dependence analysis
can be non-trivial. By overlapping the dependence analysis with
application execution, the additional latency can be hidden.

Legate also leverages Legion’s support for partitioning of logical
regions to provide the mechanism for implementing NumPy’s view
semantics, where different arrays are actually backed by the same
data. Views in NumPy are handled naturally by mapping each view
to a sub-region in a partition as sub-regions are always aliased
with their ancestor regions in Legion. Legate further uses Legion
to partition logical regions in multiple ways to adapt the distribu-
tion of arrays to the computation being performed. Legate simply
determines the best partitioning of each array for performing a
given operation and then launches its tasks without consideration
for the way these arguments have been partitioned previously. The
Legion runtime automatically manages the coherence of data be-
tween all partitions of each array. This is in stark contrast to other
distributed NumPy implementations (see Section 7), which support
only a single physical partitioning of arrays and are thus forced to
provide custom dependence and communication analyses.

3.1 Legate Core

While the majority of Legate is currently centered around provid-
ing support for the NumPy interface, there is a core module that
provides the basic functionality needed by any Python library that
intends to use Legion for accelerated and/or distributed execution.
This core module provides two primary services: an initialization
script that will launch any Python program on a distributed ma-
chine with Legion, and a set of Python bindings for performing
calls into the Legion runtime.

The execution of any Legate program is begun by the start-up
script which initializes the Legion runtime on all nodes allocated to
the application and runs a top-level task with no NumPy-specific
functionality in an unmodified Python interpreter!. The custom top-
level task configures the environment, including the Legion runtime,
and uses Python’s exec statement to invoke the Python application
file. The application can use any Python modules, including NumPy,
without restriction. The legate.numpy module provides its own
implementation for the NumPy API when it is imported. When

! The Legate start-up script can also be used to start an interactive interpreter, even
for multi-node machines, if the job scheduler supports such jobs.

SC ’19, November 17-22, 2019, Denver, CO, USA

Fields storing Fields storing

2-D matrices 1-D vectors
AR b | x0f d | xt].. |x
(l) bl Xi dl XI XI
@, Aij Rij
All data elements have type float64

Figure 4: Allocation of logical regions and fields for the Ja-
cobi solver example. By sharing a common index space, ar-
rays can re-use partitions.

the Python program is done executing, Legate will free any Legion
resources and then exit the top-level task, allowing the Legion
runtime to shut down.

The core Legate module also provides a custom set of Python
bindings for the Legion runtime interface. The bindings call out
through the Python CFFI module to Legion’s C runtime interface to
perform operations such as creating logical regions and launching
tasks. Legate’s bindings differ from the canonical set of Python
bindings for Legion which are designed for embedding the Legion
programming model in generic Python. Instead, Legate’s bindings
are specialized for the construction of Python libraries that use
Legion as an execution runtime.

3.2 Organizing Arrays in Logical Regions

The first step in translating the NumPy interface to the Legion
programming model is to organize NumPy ndarray objects into
logical regions. The most straightforward approach would be to
create a unique region for each ndarray. However, we observe a
frequent need to share partition arrangements across arrays in-
volved in an operation. For example, when adding two vectors x +y
we would naturally prefer that both x and y be partitioned in ex-
actly the same way. Therefore, we have developed an approach
that packs arrays into separate columns of common regions. Since
Legion directly supports launching tasks with arbitrary subsets
of a region’s columns, Legate can amortize the cost of dynamic
partitioning by sharing a common partitioning scheme across a set
of arrays organized in a single region.

Legate creates one or more logical regions for each array shape
encountered during execution depending on the number of arrays
of a given shape that are live at a time in a program. Each n-D
array needed by the program is associated with a field of a logical
region matching its shape. When an application calls an operator
that creates a new array (e.g., np.empty), Legate selects a logical
region with the given shape, or creates one if none exists. In the
selected region, Legion either selects an unused field with the same
element type (e.g., float64) or adds a new field as required. Legate
then returns an ndarray object to the calling program that stores
the necessary information about the associated region and field.
This object implements all the standard NumPy interfaces and
handles releasing the associated field when it is itself deallocated

Michael Bauer and Michael Garland

Natural Partitions

Indexing Partitions
(Blue) grid
= —

0..00.00.00.00.00..0

Figure 5: Region tree for the stencil example. Indexing parti-
tions are made to represent view arrays created by the appli-
cation. Natural partitions are created by Legate for distribut-
ing computations on different arrays across the machine.

Ceoner) (oo) (ot)

by Python’s garbage collector. Arrays of rank 0 (i.e., scalars) are a
special case, and are represented directly as Legion futures rather
than being allocated as a field in a region. Note that none of these
operations allocate memory for the array; only the metadata is
materialized in memory at this point. Associating multiple arrays
with the fields of a single region allows them all to share the same
set of partitions, thus helping Legate avoid performing redundant
partitioning operations.

Figure 4 illustrates the logical regions and fields that Legate
creates for the Jacobi solver example from Figure 1. Two logical
regions are created for the two different array shapes encountered
when executing the program. One logical region holds fields for
the n X n matrices A and R, while a second region holds fields for
the vectors of length n, including several versions of x, indicated by
superscripts. The precise number of occurrences of x, indicated by
k, is determined by the number of loop iterations Legion’s deferred
execution runs ahead as well as how often the Python garbage
collector is invoked, but in practice it is far smaller than n. Recall also
that the structure of logical regions does not have any implications
on data layout, so adjacent fields in a logical region do not imply
that those fields have any locality in memory.

Legate fully supports both basic and advanced indexing on ar-
rays as defined by NumPy. Basic indexing is directly supported
using the Legion partitioning APIL Sub-regions in Legion are al-
ways aliased with their parent (and other ancestor) logical regions,
and this matches the view semantics of basic indexing. When the
program creates a sub-array via basic indexing, Legate consults the
logical region associated with the source array to see if any existing
partition of that region matches the requested sub-array. If such a
partition exists, the name of the sub-region is extracted and used to
create a resulting ndarray object. If no such partition exists, Legate
will invoke the appropriate Legion partitioning operator [28] to
create the sub-region. If possible, Legate attempts to infer potential
tilings of the array from the first basic indexing call so that multiple
sub-regions can be tracked with the same partition. Figure 5 shows
the region tree created by the stencil code example in Figure 2.
Legate makes a separate partition, each with a single sub-region,
to describe the sub-arrays created by the indexing operations per-
formed on lines 3-7. We describe the creation of the other partitions
in this region tree in Section 3.3.

When advanced indexing is performed, Legate first converts the
indexing data structure into a Legate array. It then performs either
a Legion gather or scatter copy between the source and destination

Legate NumPy: Accelerated and Distributed Array Computing

arrays using the indexing array as the indirection field. This also
matches the semantics of NumPy advanced indexing which creates
a new copy of the data. In cases where advanced indexing is used
in conjunction with a Python in-place operator (e.g., +=), Legate
leverages Legion support for gather and scatter reductions with
atomic reduction operators to apply updates in-place. In cases where
advanced indexing is used in expressions on both the left and right
hand sides of a statement, Legate can fuse those into a single indirect
copy operation because Legion supports indirection arguments on
both source and destination regions.

3.3 Launching Tasks for NumPy Operations

The next step in translation from NumPy to Legion is to decompose
individual NumPy operations into one or more asynchronous tasks
that can be submitted to, and distributed by, the Legion runtime.
The precise number and kind of these tasks is informed by guidance
from our mapper, whose design is described in Section 4.

We have designed Legate operations to accept any Python value
that is convertible to a NumPy array, including scalar values which
can be identified with 0-dimensional arrays. This maximizes pro-
grammer flexibility and enables Legate to compose with other
Python libraries with minimal overhead. When a program calls
one of the NumPy interfaces supported by Legate (e.g., np.dot),
Legate converts every argument that is not already a Legate array
into a NumPy array and then subsequently a Legate array. Conver-
sions from NumPy arrays to Legate arrays have minimal cost, as
they are implemented using Legion attach operations [8] that in-
form the runtime of the existence of an external memory allocation
that should be treated as a physical instance (see Section 2.2) of a
logical region. In this case, the external memory allocation is the
buffer of the NumPy array. Using this feature, Legate can ingest a
NumPy array without needing to eagerly copy its data.

Legate must next determine whether to perform individual or
index space task launches for any computations. While Legate could
launch individual tasks onto all target processors, it is more efficient
to perform index space task launches that create tasks in bulk. In
general, Legate will only use single task launches that directly
operate on the logical regions of array arguments if it is targeting
a single processor for an operation. For parallel and distributed
execution of an operation, Legate will perform index space task
launches over partitions of the logical regions for array arguments.
The choice of whether to perform single or index space task launch
for each operation is controlled directly by the Legate mapper’s
decisions over whether and how arrays are to be partitioned.

Partitions of logical regions are created both to reflect applica-
tion level sub-arrays and to perform index space task launches. For
example, consider the stencil computation from Figure 2. Execu-
tion of the stencil code will create several different partitions of
the 2-D array representing the computation domain. The top-level
logical region for the array and all of its partitions are shown as a
region tree in Figure 5. Indexing partitions are created to represent
the sub-array views created by the application on lines 3-7, while
natural partitions are created to perform data parallel index space
task launches over the different sub-arrays. In addition to indexing
and natural partitions, Legate may also need to make dependent

SC ’19, November 17-22, 2019, Denver, CO, USA

partitions [28] for computing partitions that are a function of an-
other partition when performing NumPy operations that are not
inherently data parallel, such as the np.dot from the Jacobi exam-
ple in Figure 1. Legate computes natural and dependent partitions
for performing index space task launches along with input from
the Legate mapper for making machine specific decisions.

Natural partitions are the common partitions used by Legate for
performing data parallel operations with index space task launches.
Natural partitions are computed to balance the tile extents in each
dimension to minimize the surface-to-volume ratio for any cases in
which the boundaries of the array are needed for communication.
In addition to minimizing surface-to-volume ratio, Legate also com-
putes natural partitions for arrays with two additional constraints:
(1) a lower bound on the minimum volume of a tile, and (2) an
upper bound on the number of tiles. Appropriate choices for these
constraints depend on machine-specific characteristics; therefore,
we expose both constraints as tunable values which are set by the
Legate mapper. Furthermore, our design guarantees that all arrays
with the same shape will have the same natural partitioning. Any
array smaller than the minimum tile size is not partitioned.

To determine how to launch tasks based on array arguments,
Legate identifies the largest input or output array for a computation.
We refer to this argument as the key array. Since it is the largest
argument, the key array is also the one that is likely to be the most
expensive to move if it is not used with its natural partitioning.
If the key array is too small to have a natural partitioning, then
Legate will simply issue a single task launch to process all the
data. However, if a natural partition exists for the key array, then
Legate uses the index space that describes all the sub-regions in the
natural partition? of the key array as the index space for any task
launches that need to be performed. The point tasks in an index
space launch will then have a natural identity mapping onto the
key array, which is a property that will be leveraged by the Legate
mapper to determine task distribution.

In many cases, such as data parallel operations, all the array
arguments will have the same shape as the key array, and their
natural partitions will therefore all align. However, array arguments
may have different shapes and sizes than the key array in cases like
NumPy broadcasting (see Section 2.1), reduction operations, and
other NumPy operations such as np.dot. For single task launches,
this will not matter as the names of the logical regions can be
directly used and the task implementation will handle any broadcast
or reduction operations. However, if index space task launches
are to be performed, Legate must also determine the dependent
partitions and projection functions needed to be used for the other
array arguments which are of different shape than the key array.
Projection functions allow index space task launches to compute
the names of sub-regions to be used for point tasks based on the
point of the task in an index space launch [2].

As an example, consider the NumPy expression in Figure 6 drawn
from a k-means clustering implementation which broadcasts two
1-D arrays x and y against each other to produce a new 2-D array z.
Assuming we have four processors, each of the arrays will have a
natural partition containing four sub-regions (shown in green). The
key array will be z as it is the largest and therefore the task launch

2 This index space is called the color space of the partition in Legion terminology [2].

SC ’19, November 17-22, 2019, Denver, CO, USA

=

‘ z = x[:,np.newaxis] + y[np.newaxis,:] ‘

0..30 1 0o 1213
0 1
y —
- - 0
0 0,0 1,0
0..3 0 1 1
(=) [
z 2
1 0,1 1,1
3

00 01 1011

Figure 6: An example broadcast expression that requires the
creation of dependent partitions (orange) in addition to the
natural partitions (green) of the x and y arrays. Custom pro-
jection functions are required to index the dependent par-
titions for each of the point tasks in the index space task
launch over the key array z.

will be performed over the inclusive 2-D space (0, 0)-(1, 1). Legate
then computes dependent partitions (shown in orange) of the x
and y arrays with two sub-regions to align with the needed input
data for each point task in the index space launch. After computing
these partitions, Legate chooses projection functions that use the
corresponding coordinate of the point task when indexing into the
dependent partitions to select a sub-region as input.

Legate registers a suite of around a hundred projection functions
with Legion. As in the example in Figure 6, nearly all projection
functions either add, remove, or permute the dimensionality of
the index space points in order to specify which sub-region of a
partition each point task should use. For each array argument and
associated projection function, Legate will also search for the appro-
priate partitioning on the array for use with any region arguments.
If it cannot find the proper dependent partitioning, Legate will
use a Legion dependent partitioning operation [28] to compute a
new dependent partition of the other array argument based on the
key array partitioning. With partitions and projection functions,
Legate uses Legion’s existing features to handle non-trivial NumPy
semantics such as broadcasting and reductions.

While most NumPy operations store their results directly into
output arrays, some operations (e.g., computing the minimum ele-
ment in an array with np.amin) have scalar return values. Legion
returns futures for any such return values, and Legate in turn wraps
these futures in 0-D arrays without blocking on the result. In the
case of index space task launches, Legate also passes in a reduction
operator to Legion so that Legion can perform a tree reduction of
future values across all point tasks efficiently.

3.4 NumPy Task Implementation

While Legate tasks are launched from Python through the Legion C
AP, all task implementations are written in C++ and CUDA. This
highlights an important feature of Legion that Legate leverages:
different tasks in a Legion program can be written in different
languages and seamlessly interoperate because all data is passed
through logical regions. Currently all leaf tasks are hand-written,

Michael Bauer and Michael Garland

but we believe in the future they could potentially be generated
by one of the many single-node fusion-JIT NumPy systems we
discuss in Section 7. For some leaf tasks such as those for dense
linear algebra, Legate will call out to libraries like OpenBLAS [29]
or cuBLAS [17]. Use of libraries such as cuBLAS guarantee that
users of Legate get transparent acceleration of their code using new
hardware features such as tensor cores on GPUs [18].

For every kind of task that Legate launches, there are three
different task variants that Legate registers with Legion: one for
sequential execution on a single core of a CPU, one for parallel
execution on a multi-core CPU with OpenMP, and one for parallel
execution on a GPU. For many operators we are able to implement
all three variants with a single templated C++ function that can
be instantiated using different executors, objects that decouple the
specification of how code is executed from what it is computing.
This use of executors eliminates duplicated code for variants and
simplifies code readability and maintainability. We use the existing
executors for CPUs, OpenMP, and CUDA in the Agency library [1]
to instantiate operator templates and create each of the different
task variants. Extending Legate to support additional processor
variants would simply require the creation of new executors with
which to instantiate any operator template.

Regardless of how variants are created, all variants registered for
a given NumPy operator must maintain the same ABI-like interface
for passing arguments such as regions and futures. This property
gives the Legate mapper complete flexibility to choose between
any of the available variants at runtime when making its mapping
decisions. Having at least three kinds of variants available presents
the mapper with numerous options for how best to accelerate com-
putations. For example, the mapper can decide whether to exploit
thread-level parallelism on the CPU with an OpenMP variant or
leverage task parallelism between different operations by running
the single-core CPU variant for tasks on different cores. Mappers
can even experiment with different variant combinations at runtime
and select the best choice based on profiling data.

In some cases, tasks must perform non-trivial indexing on their
array arguments to support NumPy broadcasting semantics. We
encapsulate this complexity inside the accessors that Legion uses to
mediate access to data in physical instances. To handle broadcast-
ing, we construct an affine transformation that describes how to
remove broadcast dimensions from the index space of the computa-
tion. These are then folded into the strides stored internally by the
accessor for each dimension. This eliminates the need to perform
the transform explicitly when accessing data within the task body,
and thus greatly simplifies the task variant implementation.

3.5 Limitations

While the design of Legate provides comprehensive support for
NumPy semantics, including all indexing modes and broadcasting,
our current implementation has certain limitations. Our prototype
only supports a subset of NumPy types: specifically boolean, 16-,
32-, and 64- bit signed and unsigned integers, and 16- , 32- , and
64- bit floating point types. While these cover the bulk of important
use cases, new types (including complex and compound types) can
be added without fundamental changes to Legate’s architecture.

Legate NumPy: Accelerated and Distributed Array Computing

We currently support only a subset of the full NumPy API
(about 150 methods) which is nevertheless sufficient to handle
many NumPy programs. Most of the unimplemented parts of the
API are in more complex and less frequently used methods such as
np.einsum, but no fundamental challenges to implementing any
of these methods is apparent. New method implementations can
create new partitions of arrays and launch one or more tasks to
perform their computation without needing to be aware of how
existing or future operations are implemented. For now, when an
unimplemented method is encountered, Legate will fall back to the
canonical NumPy implementation with a performance warning.

Finally, all file I/O in our implementation is done through the
normal NumPy interface, with arrays then being passed in directly
to Legate. This works well for single node cases, but leaves room
for considerable performance improvements from parallel file I/O
on distributed machines. We could address this with a drop-in
replacement for the Python library h5py [4] to take advantage of
Legion’s support for parallel I/O with HDF5 files [8].

4 NUMPY-SPECIFIC MAPPING HEURISTICS

The Legate translation of NumPy programs to the Legion program-
ming model results in a machine-independent program. As with
all machine-independent Legion programs, Legate programs must
be mapped onto the target machine. The Legion runtime contains
no scheduling or mapping heuristics and instead delegates all deci-
sions that impact the performance of a program through a call-back
mapping interface [2]. To perform this mapping, Legate comes with
a custom mapper that is a complete implementation of the Legion
mapping interface. To maintain the ease-of-use of Legate, the ex-
istence of the Legate mapper is not made visible to end-users of
Legate; the mapper leverages its domain specific knowledge of the
NumPy programming model to customize mapping decisions for
any target machine without requiring any input from Legate users.
The heuristics employed by the Legate mapper achieve reasonable
performance for most NumPy programs on many different kind of
machines, thereby maintaining the ease-of-use property of NumPy
for the vast majority of Legate users. As with all Legion mappers,
the option to modify or replace the Legate mapper is still available
for expert users that wish to tailor mapping decisions for a spe-
cific application and/or machine. However, we expect this to be an
exceedingly rare use case in practice.

The Legate mapper currently employs a greedy algorithm for
making mapping decisions for a NumPy program. The mapper
makes decisions for the mapping of each operation in isolation
without considering the mapping of other operations in the stream
of tasks launched. There is nothing in the Legion mapping interface
that precludes the Legate mapper from deploying a more holistic
mapping algorithm in the future, however, for all the NumPy pro-
grams we have encountered so far, making mapping decisions for
each operation individually has been sufficient to achieve good
performance. As a result of this architecture, the remainder of this
section will focus on how the Legate mapper makes mapping deci-
sions for individual operations.

In order to make the discussion of the Legate mapper more
concrete, we will consider the simple example of how Legate maps
the operations from the inner loop (line 15) of the Jacobi solver

SC ’19, November 17-22, 2019, Denver, CO, USA

example in Figure 1 onto a single NVIDIA DGX-1 machine with
8 GPUs. We will consider the case of an input matrix with 40K
elements on a side. Please note that the dimensions of other arrays
in the program are a direct function of the input matrix size.

When mapping an operation such as np.dot from the Jacobi ex-
ample, there are many important mapping decisions for the Legate
mapper to make. The mapper must first determine whether it wants
to distribute this operation across many processors, or run it on a
single processor. Next, if it decides to distribute the operation, it
must choose how to partition the data for each of the input and
output arrays for the operation. Finally, it must decide which pro-
cessors to run different tasks on and where to place the data for
each task. All of these decisions are intertwined because the choice
over whether to distribute an operation will depend on the choice
of how arrays are partitioned and the target processors for a given
operation. The Legate mapper employs a general framework for
making these decisions cooperatively based on the properties of
the array arguments to operations.

Legate decides how to map an operation based on the shapes
and sizes of the arrays being processed by the operation with the
goal of optimizing achieved memory bandwidth utilization. The
choice of optimizing for memory bandwidth utilization derives
from an important property of NumPy: most of its operations are
memory-bandwidth limited due to their low arithmetic intensities.
Consequently, it is important that we optimize our utilization of
this critical resource. An important outcome of this decision is that
the Legate mapper will choose to assign tasks to processors with
higher memory bandwidths, such as GPUs, when they are available.
Preferences for GPUs and other accelerators are not inherent in the
Legate mapper, but instead derive from analyzing the output of a
simple query of the Legion machine model [2] for the processors
with the highest available memory bandwidth.

Based on these metrics, the Legate mapper will decide to map
the operations in the Jacobi example onto the GPUs of our target
DGX boxes. However, the mapper does not yet know whether or
how to distribute the computations over the available GPUs. Recall
from Section 3.3, that the kind (single or index space) and size of
task launch to perform an operation is derived from the natural
partitioning (or lack thereof) of the key array argument. The choice
of distribution of an operation to specific processors derived directly
from natural partitioning of the key array argument as it is the
largest array argument for an operation and therefore the one that
we most strongly prefer to use with its natural partition to avoid
unnecessary data movement. In the case of np.dot, the key region
is the matrix R as it is considerably larger than the input vector
array or the output vector array. Whatever the natural partitioning
of R is then the mapper will assign tasks to processor(s) with direct
affinity to the memory or memories containing the data for R. For
operations such as np.sub and np.div where the arguments all
have the same size, the output array is the key region.

In a naive implementation of Legate, natural partitions of arrays
would evenly divide each array among the target processors of a
machine. There are two potential problems with this approach: first,
over-decomposition of small arrays across too many processors,
and second, over-decomposition of large arrays into too many tiles.
In the first case, the overheads of distribution and execution on
throughput-optimized processors (e.g. GPUs) can accumulate and

SC ’19, November 17-22, 2019, Denver, CO, USA

Figure 7: Dataflow graph for one iteration of the Jacobi
solver on a DGX-1. Blue boxes are tasks corresponding to
NumPy operations and yellow boxes are copies of data be-
tween GPU memories.

result in slower execution than running on a few or even a single
processor. In the second case, overheads of meta-data management
and distribution costs can result in poor performance. While the
Legate mapper does not directly control the computation of natural
partitions for arrays, it can prevent these cases from occurring by
judiciously selecting the values for two critical tunable parameters
that place bounds on how natural partitions are computed. Recall
from Section 3.3 that the mapper must choose a minimum tile
size for an array, and it must also choose a maximum number
of tiles to create. By ensuring that the minimum tile size is not
excessively small, the mapper guarantees that small arrays are not
distributed across too many processors. Furthermore, by specifying
the maximum number of tiles that can be made, the mapper ensures
that large arrays are not over partitioned.

To select a minimum tile size, the mapper makes educated guesses
about what granularity of data is needed to achieve peak bandwidth
on different kinds of processors. Currently the mapper makes this
guess by requiring that at least every thread on the target machine
process at least one kilobyte of data from an array. On a CPU, a
thread is either one physical core or one hyperthread if hyper-
threading is enabled. For the kind of Xeon CPUs with 20 cores used
in Section 6, this corresponds to needing 40 KB of data per CPU
socket per tile with hyperthreading. On a GPU, we approximate a
thread with one warp which is effectively a vectorized thread on a
streaming multiprocessor; the total number of threads for a GPU
is then the number of streaming multiprocessors (SMs) multiplied
by half the maximum number of warps that can be resident on
an SM. Note that we use half the maximum warp count because
it is unusual to fill a streaming multiprocessor with warps due to
register pressure. For the GPUs used in Section 6, this corresponds
to needing approximately 2 MB of data per GPU for a tile. While
the amounts of memory needed to saturate memory bandwidth for
current processors are baked into the mapper at the moment, it
would not be difficult for a more sophisticated mapper to profile
these constants at start-up time for any past or future machine.

The effects of these parameters can clearly be seen in Figure 7
which shows the dataflow graph for one iteration of the Jacobi
solver on a DGX-1 machine for a 40K X 40K matrix. The np.dot
operations have been distributed across all 8 GPUs (parallel blue
tasks) because it is easy to create tiles for the matrix that are at least
2 MB in size. However, the point-wise operations for the vector are

Michael Bauer and Michael Garland

all done on a single GPU because the 40K vectors only require 160
KB which is not enough to saturate the memory bandwidth of a
single GPU, let alone eight of them. Consequently, the input vector
is copied (yellow boxes) to each of the GPUs and the output partial
sums are copied back to one GPU over NVLink to perform the sum
reduction and later point-wise operations np.sub and np.div.

The Legate mapper selects the maximum-number-of-tiles tun-
able value by examining the kind of target memories and how many
of them there are in the machine. In most NumPy programs, arrays
are dense, and either large enough that they need to be distributed
across many nodes or small enough that they can easily fit in a
single node. Therefore very little dynamic load balancing is neces-
sary and arrays can be partitioned into large chunks that are evenly
distributed. Consequently, Legate usually selects this value to be
a small integer multiple of the number of GPU memories or CPU
NUMA domains in the machine. This can also be seen in the Jacobi
example from Figure 7. The 40K X 40K matrix is 6.4 GB and could
be made into 3200 tiles of 2 MB each. However, the Legate mapper
only makes 8 tiles, one for each of the 8 GPUs when distributing
the np.dot operation.

When a Legate mapper is later asked to map tasks for a specific
operation, it uses the key array to guide the distribution of tasks. For
each task that must be mapped, the mapper assigns that task to the
processor with the best affinity (highest bandwidth) to the memory
where the most recent physical instance of the (sub-) region for the
key array exists. This works identically for both single tasks and the
point tasks for index space task launches. After determining which
instance to use for the key array, and therefore target processor,
the mapper then either finds or creates physical instances for the
other array arguments. In general, the Legate mapper prefers to
also have these instances be located in the same memory as the
key array, with the highest bandwidth to the processor where the
task will run. However, under tight memory constraints where
memories are mostly full, the Legate mapper will settle for using
an instance in a memory that at least has the ability to handle loads
and stores directly from the chosen processor. In these cases, it’s
not uncommon for the Legate mapper to use instances stored in
multiple different GPU memories for a task and rely on loads and
stores traveling over PCI-E or NVLink interconnects.

In general, the Legate mapper achieves very good out of the box
performance on a wide range of NumPy programs. It does especially
well on programs with large working sets that need to be distributed
across large machines. It is currently less optimized for the case
where NumPy programs generate many small arrays that need to be
distributed around the machine without any partitioning. However,
if a user is dissatisfied with the performance of Legate, they can
directly modify the Legate mapper to improve their performance
without needing to change any code from the original NumPy
program. Most importantly, this can be done without needing to
be concerned with breaking the correctness of the translation from
NumPy to Legion performed by Legate, or by the mapping onto
the hardware performed by Legion. While we do not expect this to
be a common case, for expert users that demand peak performance,
it is a novel means of recourse for addressing the shortcomings of
scheduling and mapping heuristics not afforded to them by any
other NumPy programming system of which we are aware.

Legate NumPy: Accelerated and Distributed Array Computing

5 CONTROL REPLICATION

The most important part of Legate that enables it to scale well is
its ability to leverage a feature in the Legion runtime system called
control replication. All Legion programs begin with a single top-level
task. Without control replication, whichever node initially begins
running this task can quickly become a sequential bottleneck as
it attempts to distribute sub-tasks to other nodes in the machine.
No matter how small the runtime overhead is for analyzing and
launching tasks, at some node count it is guaranteed to stop scaling.
This sequential bottleneck is not specific to Legion, but inherent in
any system with a centralized controller node [23, 30].

As its name suggests, control replication directly addresses this
problem by running multiple copies of a task (usually the top-
level task) on different processors, with all the copies of the task
functioning collectively with the same behavior as the original
logical task. Traditionally, control replication in Legion has referred
to a static program transformation performed by compilers that
target the Legion runtime[25]. More recently, the Legion runtime
has introduced support for a dynamic version of control replication.

Dynamic control replication in Legion parallelizes Legion’s de-
pendence analysis so that each node participating in the execution
of a control-replicated task becomes responsible for analyzing a
sub-set of tasks launched as dictated by the mapper, and figures out
how to hook up dependences, communication, and synchroniza-
tion with any tasks owned by other nodes. Most importantly, the
runtime does all this transparently without requiring any changes
to the original top-level task. In the case of Legate, this ensures that
users do not need to make any changes to their NumPy program,
and no changes need to be made to the Legate translation from
NumPy to Legion. Consequently, with control replication, Legate
ensures that the scalability of a NumPy program becomes dictated
by its inherent communication patterns and not limited by any
aspects of the underlying programming system.

Dynamic control replication works by executing multiple copies
of a task, called shards, on different processors across the system.
The number and placement of shards are chosen by the mapper; the
Legate mapper will generally choose one shard per physical node.
Shards all run the same code as though they were each the only
copy of the task. However, when shards call into the Legion runtime
to perform operations such as creating logical regions or launching
tasks, the runtime is aware that the shards are all operating collec-
tively as a single logical task and behaves accordingly. For example,
when creating logical regions, each shard receives back the same
name for a newly created region. Similarly, when launching a single
sub-task, Legion ensures that only a single shard is ultimately re-
sponsible for executing the sub-task. Figure 8 provides an example
depicting how this works. Logically, the top-level task launches
sub-tasks that Legion analyzes for dependences and constructs a
dependence graph. With control replication, both shards execute
the same top-level task and construct the same dependence graph.
The decision of which sub-tasks are executed by which shards (i.e.
not blacked-out) is made by the mapper via its choice of sharding
functions. Sharding functions determine which shard will be re-
sponsible for executing a task in the case of single task launches, or
for executing specific points in an index space task launch. Legion
then automatically hooks up cross-shard dependences.

SC ’19, November 17-22, 2019, Denver, CO, USA

Physical Execution
Shard 0

Logical Execution

Top-Level
Task

Top-Level
Task m Shard 1

Top-Level
Task

Figure 8: A depiction of control replication in Legion. On
the left is the programmer’s view of a task that launches off
sub-tasks which Legion analyzes to construct a dynamic de-
pendence graph. On the right is how this is executed in prac-
tice, with multiple shard copies of the control replicated task
launching their own subtasks and Legion hooking up depen-
dences where necessary across the shards.

While the details of how control replication is implemented in
Legion are beyond the scope of this paper, it is important to un-
derstand how Legate leverages control replication to allow NumPy
programs to scale to large machines. For all runs of a NumPy pro-
gram on multiple nodes, the Legate mapper directs Legion to control
replicate the top-level task so that there is a copy running on each
node in the system. As mentioned in Section 3.1, each of these
copies of the top-level task then executes the normal Python pro-
gram and Legate translation from NumPy to Legion proceeds as
normal. When calls are made into the Legion runtime to launch
tasks, the runtime understands that these calls are being performed
collectively and executes them as such. The runtime also asks the
Legate mapper to select sharding functions for controlling which
tasks are handled by different shards. The Legate mapper chooses
sharding functions based on locality. The functions that the mapper
chooses assign tasks to shards where the mapper knows at least
some part of the data needed for those tasks resides.

For control replication to work correctly, the Legion runtime
must see the same order of calls into the runtime from each shard.
Since the Legate translation to Legion is deterministic, this requires
the original Python program to make the same order of NumPy API
calls with the same arguments. In general, most Python programs
trivially satisfy this requirement, but there are a few ways it can
be broken. For example, any control flow that depends on values
generated or derived from a non-NumPy random number generator
can lead to a different ordering of NumPy API calls on different
shards. Similarly, iterating over an un-ordered data structure that
depends upon Python hashing functions such as a set or dict
and performing NumPy API calls inside the loop could result in a
permuted set of NumPy API calls on different shards as the hashes
for different objects could be different across shards. To detect such
cases, Legate provides a special execution mode which validates
that a program’s execution is consistent with the requirements for
control replication and reports when it is not. This validation is
performed by confirming that all NumPy API calls occur in the same
order and with the same arguments across all shards. In practice,
we have yet to encounter a NumPy program that required any
modifications to be used with control replication.

SC ’19, November 17-22, 2019, Denver, CO, USA

6 PERFORMANCE RESULTS

In order to evaluate Legate, we tested it on a set of example NumPy
programs written by ourselves and others from both machine learn-
ing and more traditional HPC workloads. While these programs
are fairly small in size (none are more than 100 lines of NumPy),
they exercise a surprising number of communication and compu-
tation patterns that stress systems in different ways. In part, this
illustrates the power of NumPy: many sophisticated algorithms can
be expressed easily and succinctly.

For our performance analysis, we measure Legate’s performance
when running in both GPU-centric and CPU-only modes; CPU-only
mode provides a useful comparison against systems that can only
run on CPUs. We compare Legate against several different systems
with NumPy or NumPy-like interfaces. On a single node, we com-
pare Legate against both the canonical NumPy implementation
shipped with most versions of Python, as well as a special version
of NumPy developed by Intel, which has MKL acceleration for some
operations [6]. We also compare against CuPy [19] on a single GPU
because CuPy provides a drop-in replacement interface for NumPy
on just one GPU; CuPy also supports multi-GPU execution, but,
unlike Legate, only does so with extensive code changes.

For a multi-node comparison, we evaluate Legate against equiv-
alent programs written to target the Dask array library [23]. Dask
is a popular task-based runtime system written entirely in Python
that supports both parallel and distributed execution of programs.
Additionally, Dask supports several different libraries on top of the
underlying tasking system, such as its array and dataframe libraries.
In particular, the array library presents an interface almost identical
to NumPy, making it an obvious choice for developers looking to
port their programs to a system that can scale beyond a single node.

The one extension to the NumPy interface that Dask makes is
the need to select a chunk tuple when creating arrays. The chunk
tuple describes how the array should be partitioned along each
dimension of the array. Users can pick chunks explicitly, or they
can pass an "auto" string and Dask will use internal heuristics to
select the chunk tunable for them. For all of our experiments, the
only difference between the code for the NumPy/Legate version
of a program and the Dask version is the specification of chunks.
For each experiment, we will have two different Dask comparisons:
one running the code with "auto" chunks to demonstrate out of
the box performance, and a second with hand tuned chunk sizes to
demonstrate the best possible Dask performance.

All our experiments are run on a cluster of 32 NVIDIA DGX-1V
nodes. Each node has 8 Tesla V100 GPUs with 16 GB of HBM2 mem-
ory per GPU. GPUs are connected by a hybrid mesh cube topology
with a combination of NVLink and PCI-E connections. Each node
also has two 20-core Intel Xeon E5-2698 CPUs with hyperthreading
enabled and 256 GB of DDR4 system memory. Nodes are connected
by an Infiniband EDR switch with each node having 4 Infiniband
100 Gbps NICs.

For each experiment, we perform a weak-scaling test to emulate
the kind of usage that would be expected of a scalable NumPy
system: users would progressively require more hardware to handle
increasingly large data sizes. To compare performance between
CPUs and GPUs, we keep the per-socket problem size constant.
This means that GPU-centric curves will extend out four times

Michael Bauer and Michael Garland

VV LegateCPU @@ NumPy
AA Legate GPU < Intel (MKL) NumPy
D>D> Dask Auto O3 cupy
<1<] Dask Tuned
10° HAy A A 7y IS A A A& -3
¥ @
g
3
2
=
3 |«
g > <
£ v v v v
£
B S S -
e > <« <
A4 > > D> 4
@
V"0 400 800 7600 3200 6400 72800 5600 5120
(1 Sockets) (2 Sockets) (4 Sockets) (8 Sockets) (16 Sockets) (32 Sockets) (64 Sockets) (128 Sockets) (256 Sockets)
Options (Milions)

Figure 9: Weak-scaling throughput of Black-Scholes.

farther than CPU-only curves because there are 8 GPUs per node
versus only 2 CPU sockets per node. Each data point is the result
of performing 12 runs, dropping the fastest and slowest runs, and
then averaging the remaining 10 runs. We always plot throughput
on a log-log axis due to the extreme differences in performance
between the various systems.

Our first experiment is with Black-Scholes option pricing. This
is a trivially parallel application where every option may be priced
independently. Therefore, we expect to see perfect weak scaling.
With both modes of Legate we see exactly this result in Figure 9:
the GPU version of Legate maintains a throughput of 1 billion op-
tions per GPU per second out to 256 GPUs, while the CPU version
maintains a throughput of 11 million options per CPU socket per
second out to 64 sockets. Using control replication, Legate does
not have a centralized scheduler node that can limit scalability. On
the contrary, Dask initially starts off better than the CPU version
of Legate on small socket counts because of its ability to perform
operator fusion to increase computational intensity. However, it
has to coarsen some of its tasks using larger chunk factors to reduce
the overheads of distributing tasks to multiple nodes from its single
controller node, limiting its scalability. There are no BLAS opera-
tions that can leverage both sockets in Black-Scholes so having an
extra socket does not aid the performance of canonical NumPy or
Intel Python. Note that Legate’s GPU-centric version is faster than
CuPy on a single GPU because Legion’s dependence analysis finds
task parallelism between operators which improves GPU utilization
by running concurrent kernels.

Our next experiment is with the Jacobi solver from Figure 1. Per-
formance results can be seen in Figure 10. The primary operation
for the Jacobi solver is a square matrix GEMV computation. Legate
has nearly perfect weak scaling with its CPU-only implementa-
tion. The GPU-centric version of Legate does not scale as well due
to some distributed communication overheads for reducing and
broadcasting data, but its throughput still remains higher than the
CPU-only version even out to 256 GPUs. In the future, Legate could
eliminate these overheads by recognizing the repetitive nature of
the solver and leveraging Legion tracing [12]. Dask does not scale
nearly as well as Legate. Dask loses significant performance going
from 2 sockets (1 node) to 4 sockets (2 nodes). We surmise that this
is due to the cost of data movement showing up. Dask then con-
tinues to slow down with increasing node count as the centralized
controller node becomes a bottleneck. Note that Intel Python starts
out faster than normal NumPy on a single socket because GEMV is

Legate NumPy: Accelerated and Distributed Array Computing

A A A
@ A A
A
107 &
2 A
2 A
5 |V \4 v
& Q v v v v
S
S 8
H
2 <
: [
10 > <
B>
V'V LegateCPU @@ NumPy
IAA Legate GPU {)4) Intel (MKL) NumPy
D>D> DaskAuo (I CuPy
l<q <] Dask Tuned

R 19600 27566 39204 55696 78766 111302 157532 222784
(1Sockets) (2 Sockets) (4 Sockets) (8 Sockets) (16 Sockets) (32 Sockets) (64 Sockets) (128 Sockets) (256 Sockets)
Matrix Dimension

Figure 10: Weak-scaling throughput of a Jacobi solver.

10t

(@@ NumPy V'V Legate CPU
¢ Intel (MKL) NumPy ~ A-A Legate GPU
B0 cuPy
A 4 A A A A A i i

¢ m

H

2

S .

2V v v v v v v

g

£

[ecg

10}

12500 17500 25000 35000 50000 70000 700000 740000 200000
(1Sockets) (2 Sockets) (4 Sockets) (8 Sockets) (16 Sockets) (32 Sockets) (64 Sockets) (128 Sockets) (256 Sockets)
Problem Size

Figure 11: Weak-scaling throughput of a 2D stencil.

an operation that can be accelerated by MKL. However, it falls back
to the same performance as NumPy on two sockets due to the cost
of moving data between NUMA domains. The Legate mapper on
the other hand is highly NUMA-aware and does a better job placing
data in NUMA domains from the start, which results in less data
movement between NUMA domains and therefore better scaling.
Legate’s CPU-only version is also better than Intel Python on a sin-
gle socket because the Legate mapper chooses to use the OpenMP
task variants for all operations, whereas Intel Python parallelizes
only the GEMV operation.

Figure 11 contains results from running an extended version
of the 2-D stencil computation from Figure 2. Legate’s creation of
detailed region trees, like those in Figure 5 for sub-views, allows
Legion to infer the nearest-neighbors communication pattern that
weak scales for both CPU and GPU operations. Note that there
are no Dask lines on this graph because Dask does not permit
assignments into sub-array views like those on line 11 of Figure 2
or during boundary condition assignments in the full program.

In order to test a few machine learning workloads, we imple-
mented both linear and logistic regression in NumPy. Since their
performance curves are very similar we only show the results for
logistic regression in Figure 12. Both regressions implement batch
normal gradient descent which requires keeping all the data points
in memory at all times. It also requires a full reduction of weight
gradients across all nodes followed by a broadcast of the update
to each node. Legate achieves nearly perfect weak scaling for both
linear and logistic regression on CPUs. Running with GPUs, Legate
weak scales out to 32 GPUs, but then begins losing performance
as the additional overheads of the very small reduction tree tasks

SC ’19, November 17-22, 2019, Denver, CO, USA

A A A A A A
A
A
10"
v v A
7 ¥ M v v v
5 |«
10 a
<) < H
3 @
2 P
: I <
£
B |
>
'V V LegateCPU @@ NumPy
AA Legate GPU () Intel (MKL) NumPy
>D> DaskAuto [CuPy
|<4<] Dask Tuned
102

25 50 100 2 800 1600 3200 6401
(1Sockets) (2 Sockets) (4 Sockets) (8 Sockets) (16 Sockets) (32 Sockets) (64 Sockets) (128 Sockets) (256 Sockets)
Problem Size (Millions of Samples, 32 features)

Figure 12: Weak-scaling of logistic regression.

V'V LegateCPU @@ NumPy
AA Legate GPU {){) Intel (MKL) NumPy
D> > Dask Auto O cupy
<q<] Dask Tuned
A A A
107 N A
3" = ¥
m 1
2
=1 A
£ 19
2 | @ ¢ a
E v v v A
) < < v v v
B> > <
> <
> g
10

" e 19600 27556 39204 55696 78400 110224 155236 219024
(1 Sockets) (2 Sockets) (4 Sockets) (8 Sockets) (16 Sockets) (32 Sockets) (64 Sockets) (128 Sockets) (256 Sockets)
Matrix Dimension

Figure 13: Weak-scaling of a preconditioned CG solver.

begin to accumulate. Dask has difficultly scaling and performance
continues to decline as it reaches 32 nodes. Note that in these cases
there is more than an order of magnitude in performance differ-
ence between the auto and tuned Dask performance curves. This
highlights the importance of manual tuning on systems like Dask.
Legate, in contrast, insulates the user from such details and au-
tomatically determines the best partitioning to be used for each
operation. Legate also outperforms CuPy for logistic regression on
a single GPU by discovering task parallelism across operators that
enables multiple kernels to execute on the device simultaneously.
Lastly, we implemented a full conjugate gradient solver both
with and without preconditioning in NumPy. Adding support for
a preconditioner is usually a complex change for a solver, but in
NumPy it only requires an additional eight lines of code. The per-
formance results for these examples are also very similar so we only
show the results from our experiments with the preconditioned con-
jugate gradient solver in Figure 13. CPU-only Legate weak scales
very well, while the GPU-centric version has kernels that run fast
enough to expose several Legion analysis overheads that could be
fixed in the future by tracing [12]. Dask loses significant perfor-
mance when moving from single node (2 socket) to multi-node
(4 socket) execution. Its performance continues to decline as the
node count increases because of its centralized scheduler. Note that
in these examples, Intel Python outperforms Legate’s CPU-only
execution on both single and dual sockets. MKL is faster than the
OpenBLAS GEMV routines that Legate uses and allows Intel Python
to overcome its initially poor placement of data in NUMA domains.

SC ’19, November 17-22, 2019, Denver, CO, USA

7 RELATED WORK

Providing a drop-in replacement for NumPy is a very common
approach to improving the performance of NumPy programs. Tra-
ditionally, these approaches have fallen into one of three categories.
First, are systems that accelerate parts of NumPy on a single node,
such as the previously mentioned Intel Python with MKL sup-
port [6]. Second, are systems that lazily evaluate NumPy programs
to construct an intermediate representation of the program prior to
performing operator fusion and specialization for particular kinds
of hardware like GPUs. Third are systems that attempt to distrib-
ute NumPy or NumPy-like programs across distributed compute
clusters. Most drop-in NumPy replacements fall into the second
category of systems, while Legate and several others fall into the
third category. We discuss each in turn.

One of the most popular ways of accelerating NumPy code to-
day is with CuPy [19]. CuPy is a (mostly) drop-in replacement for
NumPy that will off-load operations onto a single GPU. As was men-
tioned earlier, CuPy supports multi-GPU execution, but not with
a drop-in NumPy interface; instead users must manually manage
multi-GPU data movement and synchronization.

Another popular drop-in replacement for NumPy that acceler-
ates NumPy programs on a single GPU is Bohrium [10]. Bohrium
performs lazy evaluation of NumPy programs before attempting
to fuse operators and generate optimized code for both CPUs or a
GPU. The original Bohrium implementation also had support for
distributed CPU clusters, but that option no longer appears to be
supported and, unlike Legate, it could not target a cluster of GPUs.

Grumpy is a similar system to Bohrium that lazily evaluates
NumPy programs and then performs fusion of NumPy operators
into optimized multi-core CPU kernels using LLVM and single GPU
kernels targeting the NVIDIA NVVM compiler [22].

JAX is a drop-in replacement for NumPy with additional func-
tionality for performing auto-differentiation, vectorization, and
JIT-ing of fused operations [7]. JAX uses the XLA compiler which
can target both CPUs or a single GPU, but supports a restricted IR
which limits support for general NumPy programs. JAX can run
in a multi-node setting in a SPMD style when it is coupled with a
collective library, such as NCCL, but it does not attempt to handle
more sophisticated partitions of data and distributions of tasks the
way that Legate does.

Weld is a drop-in replacement for NumPy and Pandas that per-
forms lazy evaluation and fusion of common operators in order to
improve computational efficiency [20]. Weld can currently target
both CPUs and single GPUs, but cannot target clusters of GPUs.

As we discussed in Section 6, Dask is a popular Python library
for parallel and distributed computing. Dask has both a low-level
tasking API as well as several higher-level APIs built on top for
supporting arrays and dataframes [23]. The high-level array inter-
face is very similar to the NumPy interface with the exception of
needing to specify chunk factors. While Dask can support GPU
computations inside of tasks in its low-level API, it is difficult for
programmers to keep data in GPU memories across task invocations.
Dask’s high-level array-based API is also not GPU accelerated.

NumPywren is a high-level interface for performing dense linear
algebra operations at scale in the cloud [24]. Due to the limitations

Michael Bauer and Michael Garland

of the server-less lambda functions that are employed, NumPy-
wren is limited in the kinds of optimizations that it supports for
distributed computing and it is not able to leverage GPUs.

Arkouda is a NumPy-like system built on top of the Chapel
programming language and is capable of executing programs in-
teractively at scale [14]. Unlike Legate, Arkouda is not a drop-in
replacement for NumPy as it needs additional type information to
translate code to Chapel. To the best of our knowledge Arkouda
does not provide any support for GPU acceleration of programs.

GAIN is a distributed implementation of the NumPy interface
on top of the Global Arrays programming model [3]. Using Global
Arrays GAIN was able to achieve good scalability on large CPU
clusters but did not support GPUs.

Spartan is a drop-in replacement for NumPy that also lazily eval-
uates NumPy programs similar to Grumpy and Bohrium but also
distributes them around a cluster [5]. The IR of Spartan is limited
to just a few common operators which reduces the generality of
the kinds of NumPy operators that they support. Spartan also does
not target clusters containing GPUs.

Phylanx is a developing project to implement NumPy on top
of the HPX runtime [21]. HPX is known to run at scale on large
clusters, but it is unclear whether Phylanx will support GPUs.

Ray is a new distributed task-based runtime system for Python [15].
While the design of the schedulers are very different, both Legate
and Ray have distributed schedulers and have native support for
GPUs. Ray’s scheduler is only a two-level distributed scheduler,
however, while the Legion scheduler used by Legate works to arbi-
trary nesting depths of tasks. Ray also does not support a NumPy-
like interface for array computing.

Finally, the implementation of Legate relies heavily upon the
Legion programming model and runtime system [2, 8, 12, 26-28].
The fully dynamic ability of Legion to create and partition data,
launch tasks, and analyze tasks for dependences at runtime is essen-
tial to supporting arbitrary NumPy programs with data dependent
behavior. Furthermore, Legion’s support for multiple and arbitrary
partitions of data in conjunction with the sequential semantics
of the programming model is crucial to reducing the complexity
of Legate’s implementation. The Legion mapper interface makes
Legate portable across different machines by decoupling perfor-
mance decisions from the functional specification of a program.

8 CONCLUSION

We have described the design of Legate, an accelerated and scal-
able implementation of NumPy, that allows users to harness the
computational throughput of large-scale machines with unmodi-
fied NumPy programs. Legate implements a novel methodology for
translating NumPy-based programs to the Legion runtime system
and a separate set of domain-specific heuristics for intelligently
mapping such programs to target machines. To avoid the sequen-
tial scaling bottlenecks of having a single control node, typical of
distributed systems with an interpreted front-end, Legate leverages
support for dynamic control replication in the Legion runtime. As
a result of efficient translation to Legion, effective mapping strate-
gies, and control replication, our Legate implementation enables
developers to weak-scale problems out to hundreds of GPUs with-
out code rewrites. Going forward, we think Legate serves as the

Legate NumPy: Accelerated and Distributed Array Computing

foundation for porting a large class of Python libraries on top of
Legion, all of which will be able to naturally compose because they
all will share a common data model and runtime system capable of
analyzing dependences and data movement requirements across
library abstraction boundaries.

ACKNOWLEDGMENTS

Work on control replication in the Legion runtime that made Legate
possible was funded by Los Alamos National Laboratory through
the Department of Energy under Award Number DENA0002373-1
as part of the Exascale Computing Project (17-SC-20-SC), a collab-
orative effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration. Jared Hoberock
ported many of the existing Legate task variants to use Agency,
both significantly simplifying the code and making it easier to
maintain. Special thanks goes to Josh Patterson, Peter Entschev,
Felix Abecassis, Keith Kraus, and especially Matthew Rocklin of
the NVIDIA RAPIDS team for their help in setting up and running
Dask correctly. Alex Aiken and Sean Treichler both provided help-
ful comments and feedback on earlier drafts of this paper. We also
thank Peter Hawkins for providing detailed information on JAX.

REFERENCES

[1] Agency 2019. Agency: Execution Primitives for C++. https://github.com/
agency-library/agency.

[2] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. 2012. Legion: Expressing
Locality and Independence with Logical Regions. In Supercomputing (SC).

[3] Jeff Daily and Robert R Lewis. 2010. Using the Global Arrays Toolkit to Reim-

plement NumPy for Distributed Computation. PROC. OF THE 9th PYTHON IN

SCIENCE CONF (01 2010).

] h5py 2019. h5py. https://www.h5py.org/.

[5] Chien-Chin Huang, Qi Chen, Zhaoguo Wang, Russell Power, Jorge Ortiz, Jinyang
Li, and Zhen Xiao. 2015. Spartan: A Distributed Array Framework with Smart
Tiling. In 2015 USENIX Annual Technical Conference (USENIX ATC 15). USENIX
Association, Santa Clara, CA, 1-15. https://www.usenix.org/conference/atc15/
technical-session/presentation/huang-chien-chin

[6] Intel 2019. IntelPy. https://software.intel.com/en-us/distribution-for-python.

[7] JAX 2019. JAX: Autograd and XLA. https://github.com/google/jax.

[8] Z.]Jia, S. Treichler, G. Shipman, M. Bauer, N. Watkins, C. Maltzahn, P. McCormick,
and A. Aiken. 2017. Integrating External Resources with a Task-Based Program-
ming Model. In 2017 IEEE 24th International Conference on High Performance
Computing (HiPC). 307-316. https://doi.org/10.1109/HiPC.2017.00043

[9] Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001-. SciPy: Open source
scientific tools for Python. http://www.scipy.org/

[10] Mads RB Kristensen, Simon AF Lund, Troels Blum, Kenneth Skovhede, and Brian

Vinter. 2013. Bohrium: Unmodified NumPy Code on CPU, GPU, and Cluster.

(2013).

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: A LLVM-based

Python JIT Compiler. In Proceedings of the Second Workshop on the LLVM Compiler

Infrastructure in HPC (LLVM ’15). ACM, New York, NY, USA, Article 7, 6 pages.

https://doi.org/10.1145/2833157.2833162

[12] Wonchan Lee, Elliott Slaughter, Michael Bauer, Sean Treichler, Todd Warszawski,

Michael Garland, and Alex Aiken. 2018. Dynamic Tracing: Memoization of Task
Graphs for Dynamic Task-based Runtimes. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis
(SC ’18). IEEE Press, Piscataway, NJ, USA, Article 34, 13 pages. http://dl.acm.org/
citation.cfm?id=3291656.3291702

[13] Wes Mckinney. 2011. pandas: a Foundational Python Library for Data Analysis

and Statistics. Python for High Performance and Scientific Computing (01 2011).
[14] Michael Merrill, William Reus, and Timothy Neumann. 2019. Arkouda: Interactive
Data Exploration Backed by Chapel. In Proceedings of the ACM SIGPLAN 6th on
Chapel Implementers and Users Workshop (CHIUW 2019). ACM, New York, NY,
USA, 28-28. https://doi.org/10.1145/3329722.3330148

[15] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, William Paul, Michael L. Jordan, and Ion Stoica. 2017. Ray:
A Distributed Framework for Emerging AI Applications. CoRR abs/1712.05889
(2017). arXiv:1712.05889 http://arxiv.org/abs/1712.05889

[16] NumPy 2019. NumPy v1.16 Manual. https://docs.scipy.org/doc/numpy/.

[17] NVIDIA 2019. cuBLAS. https://docs.nvidia.com/cuda/cublas/index.html.

(11

SC ’19, November 17-22, 2019, Denver, CO, USA

[18] NVIDIA 2019. Tensor Cores. https://www.nvidia.com/en-us/data-center/

tensorcore/.

Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman Loomis.
2017. CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations. In
Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-
first Annual Conference on Neural Information Processing Systems (NIPS). http:
//learningsys.org/nips17/assets/papers/paper_16.pdf

Shoumik Palkar, James J. Thomas, Deepak Narayanan, Anil Shanbhag, Rahul
Palamuttam, Holger Pirk, Malte Schwarzkopf, Saman P. Amarasinghe, Samuel
Madden, and Matei Zaharia. 2017. Weld: Rethinking the Interface Between
Data-Intensive Applications. CoRR abs/1709.06416 (2017). arXiv:1709.06416
http://arxiv.org/abs/1709.06416

Phylanx 2019. Phylanx: A Distributed Array Toolkit. http://phylanx.stellar-group.
org/.

Mahesh Ravishankar and Vinod Grover. 2019. Automatic acceleration of
Numpy applications on GPUs and multicore CPUs. CoRR abs/1901.03771 (2019).
arXiv:1901.03771 http://arxiv.org/abs/1901.03771

Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms and
Task Scheduling. In Proceedings of the 14th Python in Science Conference, Kathryn
Huff and James Bergstra (Eds.). 130 - 136.

Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram Venkataraman,
Ion Stoica, Benjamin Recht, and Jonathan Ragan-Kelley. 2018. numpywren:
serverless linear algebra. CoRR abs/1810.09679 (2018). arXiv:1810.09679 http:
//arxiv.org/abs/1810.09679

Elliott Slaughter, Wonchan Lee, Sean Treichler, Wen Zhang, Michael Bauer, Galen
Shipman, Patrick McCormick, and Alex Aiken. 2017. Control Replication: Com-
piling Implicit Parallelism to Efficient SPMD with Logical Regions. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC '17). ACM, New York, NY, USA, Article 14, 12 pages.
https://doi.org/10.1145/3126908.3126949

S. Treichler, M. Bauer, and Aiken A. 2014. Realm: An Event-Based Low-Level
Runtime for Distributed Memory Architectures. In Parallel Architectures and
Compilation Techniques (PACT).

S. Treichler, M. Bauer, and A. Aiken. 2013. Language Support for Dynamic, Hier-
archical Data Partitioning. In Object Oriented Programming, Systems, Languages,
and Applications (OOPSLA).

S. Treichler, M. Bauer, Sharma R., Slaughter E., and A. Aiken. 2016. Dependent Par-
titioning. In Object Oriented Programming, Systems, Languages, and Applications
(OOPSLA).

Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. 2013. AUGEM: Au-
tomatically Generate High Performance Dense Linear Algebra Kernels on x86
CPUs. In Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis (SC ’13). ACM, New York, NY, USA,
Article 25, 12 pages. https://doi.org/10.1145/2503210.2503219

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing. In Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation (NSDI’12). USENIX Association, Berkeley, CA, USA,
2-2. http://dl.acm.org/citation.cfm?id=2228298.2228301

https://github.com/agency-library/agency
https://github.com/agency-library/agency
https://www.h5py.org/
https://www.usenix.org/conference/atc15/technical-session/presentation/huang-chien-chin
https://www.usenix.org/conference/atc15/technical-session/presentation/huang-chien-chin
https://software.intel.com/en-us/distribution-for-python
https://github.com/google/jax
https://doi.org/10.1109/HiPC.2017.00043
http://www.scipy.org/
https://doi.org/10.1145/2833157.2833162
http://dl.acm.org/citation.cfm?id=3291656.3291702
http://dl.acm.org/citation.cfm?id=3291656.3291702
https://doi.org/10.1145/3329722.3330148
http://arxiv.org/abs/1712.05889
http://arxiv.org/abs/1712.05889
https://docs.scipy.org/doc/numpy/
https://docs.nvidia.com/cuda/cublas/index.html
https://www.nvidia.com/en-us/data-center/tensorcore/
https://www.nvidia.com/en-us/data-center/tensorcore/
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://arxiv.org/abs/1709.06416
http://arxiv.org/abs/1709.06416
http://phylanx.stellar-group.org/
http://phylanx.stellar-group.org/
http://arxiv.org/abs/1901.03771
http://arxiv.org/abs/1901.03771
http://arxiv.org/abs/1810.09679
http://arxiv.org/abs/1810.09679
http://arxiv.org/abs/1810.09679
https://doi.org/10.1145/3126908.3126949
https://doi.org/10.1145/2503210.2503219
http://dl.acm.org/citation.cfm?id=2228298.2228301

	Abstract
	1 Introduction
	2 Background
	2.1 Elements of NumPy
	2.2 Legion Programming Model

	3 Translating NumPy to Legion
	3.1 Legate Core
	3.2 Organizing Arrays in Logical Regions
	3.3 Launching Tasks for NumPy Operations
	3.4 NumPy Task Implementation
	3.5 Limitations

	4 NumPy-Specific Mapping Heuristics
	5 Control Replication
	6 Performance Results
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

