A HYBRID APPROACH TO AUTOMATIC PROGRAM
PARALLELIZATION VIA EFFICIENT TASKING WITH
COMPOSABLE DATA PARTITIONING

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Wonchan Lee
December 2019

© 2019 by Woenchan Lee. All Rights Reserved.
Re-distributed by Stanford University under license with the author.

Thiswork islicensed under a Creative Commons Attribution-

‘@ @ @ \ Noncommercia 3.0 United States License.
http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/nx577zd3584

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/nx577zd3584

| certify that | have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Alex Aiken, Primary Adviser

| certify that | have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

John Mitchdll

| certify that | have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Oyekunle Olukotun

Approved for the Stanford University Committee on Graduate Studies.
PatriciaJ. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature pageisonfilein
University Archives.

Abstract

Despite the decades of research, distributed programming is still a painful task and
programming systems designed to improve productivity fall short in practice. Auto-
parallelizing compilers simplify distributed programming by parallelizing sequential
programs automatically for distributed execution. However, their applicability is
severely limited due to the fundamental undecidability of their static analysis problem.
Runtime systems for implicit parallelism can handle a broader class of programs
via an expressive programming model, but their runtime overhead often becomes
a performance bottleneck. To design a practical system for productive distributed
programming, one must combine the strengths of different parallelization paradigms
to overcome their weaknesses when used in isolation.

This dissertation presents a hybrid approach to automatic program parallelization,
which combines an auto-parallelizing compiler with an implicitly parallel tasking sys-
tem. Our approach parallelizes programs in two steps. First, the auto-parallelizer
materializes data parallelism in a program into task parallelism. Next, the task-
ing system dynamically analyzes dependencies between tasks and executes indepen-
dent tasks in parallel. This two-stage process gives programmers a second chance
when the auto-parallelizer “fails”: When a part of a program is not amenable to
the compiler auto-parallelization, the programmer can gracefully fall back to the run-
time parallelization by writing that part directly with task parallelism. Furthermore,
hand-written tasks can be seamlessly integrated with the auto-parallelized part via
composable data partitioning enabled by our auto-parallelizer, which allows them to

share the partitioning strategy and thereby avoid excessive communication.

v

Key to the success of this hybrid approach is to minimize the overhead of the task-
ing system. To achieve this goal, we introduce dynamic tracing, a runtime mechanism
for efficient tasking. The most expensive component in the tasking system is dynamic
dependence analysis. Although this dynamic analysis is necessary when applications
exhibit true dynamic behavior, the analysis is redundant for common cases where
dependencies are (mostly) unchanging. Dynamic tracing eliminates this redundancy
in dynamic dependence analysis by recording the dependence analysis of an execution
trace and then replaying the recording for the subsequent occurrences of the same
trace. To guarantee that a recording of a trace correctly replaces the trace’s original
analysis, dynamic tracing also records memory locations that hold valid data when
it records a trace and replays the recording only when those locations are still valid.
Dynamic tracing significantly improves the efficiency of tasking, and thereby brings

the strong scalability of explicit parallelism to implicit task parallelism.

Acknowledgments

My advisor Alex Aiken has been always my first line of defense, and often the last
one as well. Alex went through all the rough drafts that I produced and turned
them into a human readable form. He also had patiently waited for me to find my
own ideas despite the lack of progress during my initial years at Stanford. With his
guidance, I was able to eventually find those ideas, develop them, and turn them
into this dissertation. I am deeply grateful for everything that he has done for me
throughout my time at Stanford.

This dissertation would have been literally impossible without the Legion project.
My work is built on the great foundation that has been perfected over the past few
years: Regent (by Elliott Slaughter), Legion (by Mike Bauer), and Realm and DPL
(by Sean Treichler). Without them paving the way I would have taken much longer to
achieve much less. Fantastic members of the Legion team, Mike Bauer, Sean Treichler,
Elliott Slaughter, Manolis Papadakis, Karthik Murthy, Todd Warszawski, Zhihao Jia
and the others, have been always available whenever I am in dire need of help. I
feel fortunate to be a part of this amazing team and I am glad that I managed to
contribute to their already fascinating project.

Helping Alex start the CS315B course about Legion was a rare opportunity for
me to disseminate ideas from a research project in the form of classroom education.
Working with students from various departments, I learned a lot about what devel-
opment tools must provide to make them accessible to a broad audience, a valuable
lesson that could not be learned elsewhere. Some of the CS315B students, such as Ak-
shay Subramaniam, Jaechwan Choi, Grace Johnson, and Ellis Hoag, developed their

final projects into research projects even after class, and collaborating with them on

vi

those projects has been both inspiring and rewarding.

Part of my dissertation work came out of my collaboration with the members of
the PSAAP II project, Gianluca laccarino, Thomas FEconomon, Hilario Torres, Lluis
Jofre, Heather Pacella, and the others. I would like to thank all of them for being
consistent supporters of the Legion project and brave testers that have had to bump
into a lot of troubles trying out the most experimental features developed over the
past few years.

All my accomplishments would have been definitely impossible without support
from my wife Kyungjin. Living in a country other than one’s own is always tough
and I could not imagine how difficult it would have been for her to decide to join me
in the United States. I cannot be more thankful that I can share every moment with
her throughout this journey. I would like to thank my parents and family as well for
being supportive of me pursuing a Ph.D. abroad. I sincerely hope one day I will be

able to reciprocate their love and support.

vii

Contents

ADbstrac

IAcknowledgments

__Introduction

IL.1 Automatic Data FPartitioning

.2 Dynamic lracing

L3 Contributiond

L4 Pubbheations

2 FProgramming Vlodel

.1 Tasks and Regiond
22 Partitiond

3 BHxecuntion Semantied

.4 Dependence Analysiy Lo

b Automatic Data Partitioning)

bl Constraint Interencd

B2 Constraint Solveil

n21 Resolntion

b2?2 Umfbication

23 External Constraintd

b.2.4 Generalized Ilmage and FPretmagd

b.o Optimizationy

iv

vi

12
16
17

18
18
19
22
24

30
31
36
36
41
43
44
45

B.3.T Relaxing Disjointness Requirementd 46

p.0o.2 Finding Private sub-Partitiony 48

B.4 Tmplementation o000 50
B.4.T Optimizing Uncenfered Readd 50
B.4.2Z Caching Inclusion Checkd 52

b Byvalmationl 0oL L Lo e e 53
b.o.l >pMV Microbenchmark 54
B2 —Sfencil 54
Bh3d MiniAerd e e 56
Bh4d Cirenifl 57
BAh PENNANTo 59

B.6_ Case Study: Soleil-X] 61
B Dynamic Tracing 65
B.T Recording Dependence Analysid 66
g.2 Replaying Dependence Analysi§o 71
g.2.1 Parallel Irace keplayo 75

.3 Opftimizations for Idempotent Recordingd 76
f.3.T Eliding Precondition Check and Postcondition Application] . . 76
A3 Fence Elision 78

U4 Fyvaluafion &1
AT Runfime Owverhead 82
B.4. 2 Strong Scaling Performancd 87
B.4.0 dDoD-Legion 93

0o helated Work 95
b.T Composable and Configurable Parallelization 95
b.2 Distributed Code (seneration 1or Ammne Frogramg 97
b.o Inspector/kxecutor Frameworky 98
b.4 Languages with Data Parallelismd 99
b.5 Constraint-Based Program Analysid 100
b.6 Efficient Task Graph Represenfafiond 100

X

b./ JI'l Compilerg

b.s Memoization tor Statetul Algorithmg

O I I

Bibliography|

List of Tables

b.1

Compilation time breakdown

g.1

Number of tasks and copies per iteration

g.2

Runtime overhead per tracd

2.5

otrong scaling periormance or dtenci

g.4

otrong scaling peritormance orf MiniAerg.

B.5

Average task granularity for MiniAerd

2.6

otrong scaling perrormance or FENNANTL00 L.

g7

otrong scaling peritormance or Circulit

2.3

otrong scaling periormance or Holeil-Xl

2.9

Average task granularity ror Soleil-X|

X1

o4

81
87
88
89
89
90
91
92
92

List of Figures

IL.1 A hybrid approach to automatic program parallelization

.2 Parallelizable loops

IL.o Loops parallelized with tasks

.4 Partitioning constrainty

IL.o DFL programs solving the constraints m Figure L.4

.o lmage and preimage operatory

IL./ Pseudo-code example with a user-provided constraint

.5 FExample program

IL.Y “Iraces of the program 1n Figure 1.8 . . .

IL.10 Task graphs 1or traces in Figure 1.Y . . .

IL.11 Iraces aiter mapping changdg
IL.12 "lask eraphs for traces kK and £+ 1 . . .

.1 HExample program
.2 DPLsyntax
.o Example DPL program

.4 HExample partitions irom the program in Figure 2.0

.0 HExample of parallel task launchey

.0 FExample ol 1ll-behaved task instances . .

Y_(_Permission lattica

E.5 Permission annotations ror the tasks i Figure 2.4

E.Y Handling reduction using reduction butierd

R.10 BExample dependence analysiy

.11 Task graph oI the program 1n rFigure 2.9

xii

© © 0 J O =~

11
12
13
14
15
15

19
20
21
22
22
23
24
25
26
28
29

p.l Constraint language syntaxo
pb.2 BExample of constraint mfterencd
b.o BExample with a disjointness predicate on the iteration spacqd
b4 DPL lemmas for resolutionl L L0000 0L L Lo
p.o Unification as a common subgraph problemf
.0 OpMV examplg Lo
b.(bExample loop with multiple uncentered reduction§
p.¢ helaxing disjointness constraint from uncentered reductiong.
b.Y Example execution of loops in Figure 5.8
.10 Private sub-partition theorem
b.11l BExample loop with an uncentered read
p.12 Modined loop using ghost region tor the uncentered read
b.lo Example ot a cache replacing the guard 1n Figure 5.14.
pb.14 Inmitialization code ror the cache ¢ n Figure o.14
b.1o Weak scaling pertormance ot SpMV|00
p.10 Weak scaling pertormance ot Stenctfo o000
b.17 Weak scaling pertormance of MiniAerg
pb.18 Weak scaling pertormance ot Circultfo
b.1Y9 Weak scaling pertormance of PENNANIL
b.2U0 ‘lask graph of poleil-X|o o
p.21 Weak scaling pertormance of Soleil-X|
g.1 Syntax ot graph calculugo 0oL
g.2 Rhecording of the dependence analysis in Figure 2.100
g.0 Iransitive reduction on the commands in Figure 4.4
gd.4 Copy FPropagation on the commands in Figure 4.4
k.o Rheplay of dependence analysis using the recording in rigure 4.2

£.0 Iranstormation ror parallel trace replay L.
g./ BExample ot spurious dependencies 1n trace replayyg
B.8 Fence elision for the trace in Figure 4.4
g.Y lask graph with fence elision oo

Xiil

31
34
35
37
42
45
46
47
48
49
o1
o1
52
93
95
55
56
o7
99
62
63

67
69
70
71
73
75
78
79
80

g.10

oynthetic benchmark program

g.11

‘lask graph of the program 1 Figure 4.10

g.12

Runtime overhead or the synthetic benchmark program

d.13

Diminishing return function R(71")

g.14

lask graph of SoD-Legionn

g.1o

otrong scaling peritormance or SoD-Legion|

Xiv

83
83
84
86
93
94

Chapter 1
Introduction

Distributed programming is hard. Each node in a distributed memory machine has
direct access only to its local memory. Thus, programs for such a machine must explic-
itly move data between memories when the data is partitioned across multiple nodes.
Besides this burden, programs must also avoid well-known parallel programming haz-
ards, such as deadlocks and data races, which are in and of themselves notoriously
difficult to fix. Writing a correct program, let alone an efficient one, is a challenging
task.

The first generation of programming systems for high performance computing
tried to tackle this programmability issue with auto-parallelizers [[d,25,d2, 47,49, [74],
a compiler that transforms sequential programs directly into parallel versions run-
ning on distributed memory machines. As the parallelizability of a program cannot
be determined statically in general, only data parallel loops, which can be checked as
parallelizable at compile time, were targeted. Nevertheless, these auto-parallelizers
perform a great deal of non-trivial code transformations to generate the code nec-
essary for distributed execution, such as data partitioning and communication and
synchronization between distributed processes. When applicable, auto-parallelization
is an accessible form of distributed programming as it guarantees sequential semantics
for the output parallel program, making parallel programs almost as easy to write as
sequential programs.

Despite years of research and standardization efforts [A7], auto-parallelizers for

CHAPTER 1. INTRODUCTION 2

distributed memory machines have not been widely adopted. A major hindrance to
adoption is that there has been no good solution when the auto-parallelizers “fail”:
Auto-parallelizing the entire program is often infeasible due to the fundamental lim-
itations of static analyses. In such cases, programmers would want to apply auto-
parallelization selectively to portions of the program and combine the result with
the rest of the program that would be manually parallelized. Unfortunately, this
composability problem has never been fully addressed for auto-parallelizers, limiting
their applicability for applications that are not auto-parallelizable in their entirety.
Furthermore, programmers sometimes find auto-parallelized code has unsatisfying
performance, because many of the performance-related decisions cannot be made ac-
curately in the absence of runtime information. In particular, indirect accesses, which
have been a major challenge for auto-parallelizers, cannot be handled optimally with-
out knowing the index values, which are only available at runtime. Even worse is that
auto-parallelizers provide only limited ways to fix performance issues and cannot be
tuned to their full extent.

These issues stem from the fact that programming models in which auto-parallelizers
generate distributed programs lack high-level abstractions that express concepts in-
volved in parallelization. For example, when composing multiple data-parallel pro-
grams, they must share data partitions whenever they can to avoid unnecessary com-
munication. However, almost all code generation approaches for distributed memory
systems, even those proposed recently [21, 60, 61), depend only on explicit, low-level
communication, and they synthesize the whole data partitioning code. As a result,
output programs embed an opaque program component implementing a particular
partitioning strategy, which makes them difficult to compose with other programs.
Although programming systems such as High Performance Fortran (HPF) [47] and a
family of related Fortran versions [25,42] provide data distributions, program anno-
tations describing primary data partitions, they cannot be freely exchanged between
programs because “data distributions were not themselves data objects” [47]. Other
decisions that are critical to performance, such as planning of data movement and
allocation and management of non-local data, all belong to the internals of auto-

parallelizers and there is no programmable interface to change them because they are

CHAPTER 1. INTRODUCTION 3

not directly expressible but encoded in the programming model.

On the other hand, there has been recent progress on implicitly parallel tasking
models 0,17, 30,43, 64], which overcome the main limitations of compiler-based ap-
proaches. These programming models are built on abstractions for describing the
decomposition of computation and data: A program uses tasks to sub-divide its com-
putation; a task is an opaque function that occupies a processing unit for the duration
of its execution. When the program executes, it submits tasks to the runtime system,
which then discovers parallelism by dynamically analyzing dependencies between the
tasks. In many cases, each of the tasks accesses only a sub-collection of the data
and tasking models provide first-class data partitions [I7,64] to make a decomposi-
tion of data easily expressed and shared by tasks. First-class data partitions also
enable the runtime system to handle necessary synchronization and communication
between dependent tasks as they give the runtime system a precise description of
the data shared by tasks. With tasks and first-class data partitions, programs can
express complex, irregular patterns of parallelism, which are beyond the capability of
past auto-parallelizers, and yet enjoy sequential semantics guaranteed by the runtime
system. Furthermore, these abstractions facilitate a programmable interface for per-
formance tuning [I7], achieving portable and transparent performance for programs
that are automatically parallelized at runtime.

However, implicit parallel tasking models have drawbacks that sometimes make
them unattractive. First of all, unlike auto-parallelizers, these tasking systems per-
form dependence analysis dynamically, which can become a performance bottleneck,
especially for strong scaling cases, i.e., cases where the total problem size is held fixed
while the size of parallel machine is increased. Although programs of highly dynamic
nature would benefit from the flexibility of dynamic dependence analysis, the full
analysis is often redundant for cases where the dependence structure rarely or never
changes. Nevertheless, identifying such cases and safely and selectively avoiding the
full dependence analysis for them is a non-trivial problem that is yet to be solved.
Secondly, even though the runtime system automatically discovers potential oppor-
tunities for parallel execution, programmers must still expose parallelism by issuing

a sufficient number of parallel tasks in their programs. Writing such programs with

CHAPTER 1. INTRODUCTION 4

Constraint-based automatic
data partitioning (Chapter B)

Efficient runtime analysis via
dynamic tracing (Chapter @)

Sequential :
d (N s 2
coae Auto-generated |: Dependence
+ task-based code | analysis
Interface :
i ; IV : Enter Exit
constraints Interface partitions § o ﬁ 7 trnce Task graph
Hand-written Task graph
task-based code | replay
N\ J \ J

Figure 1.1: A hybrid approach to automatic program parallelization

good performance is often far from straightforward even for data parallel problems,
because they require a careful choice of data partitions to minimize the induced com-
munication between different data parallel sections of code.

This dissertation presents a hybrid approach to automatic program parallelization
combining the benefits of compiler-based and runtime-based approaches. In this ap-
proach, the compiler auto-parallelization uses an implicitly parallel tasking model as
the target programming model to leverage the flexibility of runtime-based approaches.
Abstractions for data partitions enable composability for auto-parallelized output pro-
grams, making them easily integrated with the hand-written task-based code. The
runtime system is then optimized to have efficiency close to that of compiler-optimized
or hand-written parallel programs, via a just-in-time (JIT) specialization of the run-
time analysis for the parts that do not require a full analysis.

Figure I shows the overall structure of this hybrid approach. First, the por-
tion of a program that is amenable to compiler auto-parallelization is parallelized by
the compiler. Instead of emitting low-level code with explicit synchronization and
communication, this compiler transformation produces a task-based program using
first-class data partitions as the output. The transformation ensures that the output
task-based program exposes all data parallelism available in the input program. In-
terface constraints in the input program capture input/output relationships between

the program to be parallelized and the surrounding code, and they guide the compiler

CHAPTER 1. INTRODUCTION 3

to generate efficient code integrated with that surrounding code by reusing interface
partitions that the constraints specify. Next, the composed program is parallelized
by the runtime system for distributed execution. The runtime system performs a
dynamic dependence analysis on tasks in the composed program and constructs a
task graph, a DAG of tasks whose edges encode task dependencies, which executes on
a distributed memory machine. Key to efficient runtime analysis is dynamic tracing,
a runtime mechanism to memoize dependence analysis results, which consists of the

following components:

e The recorder first records the task graph from dependence analysis of a trace, a
sequence of recurrent tasks, along with the precondition upon which the recorded

graph can safely replace the normal dependence analysis.

e The replayer then identifies subsequent occurrences of the same trace and re-

plays the recording whenever the precondition is satisfied.

The tracing eliminates the overhead of dynamic dependence analysis for traces when-
ever it can, thereby bringing the efficiency of manually parallelized programs to im-
plicitly parallel programs having traces.

In the following sections, we provide an overview of the two components enabling

this hybrid approach: automatic data partitioning and dynamic tracing.

1.1 Automatic Data Partitioning

Data partitioning is an essential step to exploit data parallelism in implicitly parallel
tasking models. For a data parallel loop, parallelism can be realized by partitioning
the data into sub-collections and running parallel tasks each of which executes a subset
of loop iterations using its sub-collection argument. To preserve the semantics of the
original loop, the data partition must be legal; i.e., the sub-collection argument to each
task must contain all the data accessed by the task’s iterations. As programs generally
have multiple data access patterns in different loops, the possible legal partitions are

those satisfying all the constraints of all loops, while the performant partitions are

CHAPTER 1. INTRODUCTION 6

for p in Particles:
c = Particles[p].cell
Particles[p] .pos += f(Cells[c].vel, Cells[h(c)].vel)

for ¢ in Cells:
Cells[c].vel += g(Cells[c].acc, Cells[h(c)].acc)

Figure 1.2: Parallelizable loops

a subset of the legal partitions. Therefore, the goal of the auto-parallelizer is to
automatically find performant legal partitions for a given program.

We tackle this data partitioning problem with a constraint-based approach. The
crux is characterizing all possible legal partitions using partitioning constraints, a
set of constraints on first-class data partitions. Partitioning constraints are inferred
automatically from data accesses in programs, and they serve as a specification for
implementations of data partitioning. To find implementations that match the speci-
fication, we employ a constraint solver that synthesizes partitioning code in DPL, the
Dependent Partitioning Language [71], a domain-specific language for data partition-
ing. Among all partitioning implementations matching the specification, the solver
finds the one with minimal communication, which is often the most performant im-
plementation.

Our constraint-based approach enables composability in auto-parallelized pro-
grams by allowing programmers to use constraints to guide the constraint solving
process. For example, when the code to be parallelized must accept input from an-
other program component with fixed data partitions and the programmer wants to
reuse the partitions in the parallelized code, he can provide interface constraints that
capture invariants on those partitions. Our constraint solver then exploits these ex-
ternal constraints to discharge some or all partitioning constraints and synthesizes
partitioning code that reuses some or all of the data partitions that they specify;
those external constraints serve as an interface conveying information about existing
partitions to our automated data partitioning process.

We illustrate our constraint-based approach using the program in Figure 2,

CHAPTER 1. INTRODUCTION 7

task T1(Particles, Cellsl, Cells2):
for p in Particles:
¢ = Particles[p].cell
Particles([p] .pos += f(Cellsl[c].vel, Cells2[h(c)].vel)

task T2(Cells3, Cells4d):
for ¢ in Cells3:
Cells3[c].vel += g(Cells3[c].acc, Cells4[h(c)].acc)

parallel for i in P;:

T1(P [1], Py[il, Pslil)

parallel for j in FPj:
T2(P 031, B50GD

Figure 1.3: Loops parallelized with tasks

which showcases a common pattern of using indirect accesses to establish relation-
ships between different physical entities; the program is written in Regent [64], the
high-level task-based programming language that we use in this dissertation.

The program in Figure 2 stores properties of particles and cells in regions
Particles and Cells. A region is a collection of values which can be partitioned
into subregions (sub-collections of the original values). All elements of a region have
the same type, and every element has a unique index. The values in a region may
have fields, such as the cell, vel, and acc fields used in Figure I2. The first loop
iterates over Particles to update the position of each particle p. The index c of the
cell where each particle resides is stored in Particles[p].cell (line 2). The change
in each particle’s position is then computed using the velocity of the cell at ¢ and its
neighbor h(c) (line 3). The second loop updates the velocity of each cell similarly
(line 6).

The program in Figure =3 parallelizes the loops in Figure 22 using partitions of
Particles and Cells. Each parallel for loop launches tasks for subregions in the
partition, each of which runs a subset of the original loop iterations.

The partitions P, ..., Psin Figure [C3 are legal only when they make the following

CHAPTER 1. INTRODUCTION 8

PQ P3
h
\ CexX[Pz[’i] - CellS]—>[P3[i] - Cells)
Lcyes\y
P v P, P,

[Pl[i} C Particles] [P4[j] C Cells)—h>[P5[j] C Cellsj

Figure 1.4: Partitioning constraints

indirect accesses safe:
e Cellsi[c].vel at line 4;
e Cells2[h(c)].vel at line 4; and
e Cells4[h(c)].acc at line 8.

Figure I shows the partitioning constraints that capture the conditions under which
Py, ..., Ps; in Figure I3 are legal. Each node in the graph corresponds to a par-
tition. The node labeled with P; denotes a partition of Particles, whereas the
others are (potentially different) partitions of Cells. Shaded nodes represent par-
titions that must be complete; a partition is complete when its subregions include
all elements of the region. Nodes for partitions P, and P, are shaded because they
must cover the iteration space of the loops at lines 1 and 4. Edges between nodes
specify constraints on partitions. The edge from P, to Pj, labeled with the func-
tion h, requires that each subregion Ps[j| contain the image of P,[j] under h, that
is, Y(k,v) € Pyj]. F'. (b(k),v") € Ps[j]. The edge from Py to Ps describes the
same constraint but on P; and Ps. The other edge between P; and P, is interpreted

similarly:
V(k,v) € P[i]. 3. (Particles[k].cell,v') € Py[i]

Figure A gives two partitioning strategies satisfying the constraints in Figure 4,
expressed as DPL programs that construct partitions using the high-level partitioning

operators equal, image, and preimage. DPL is the partitioning sub-language of

CHAPTER 1. INTRODUCTION 9

P, = equal(Particles, N)

P, = image(P;, Particles[].cell, Cells)
P; = image(P,, h, Cells)

P, = equal(Cells, N)

Ps; = image(P;, h, Cells)

(a) Program A

Py, = P, = equal(Cells, N)
P; = preimage(Particles, Particles|].cell, Py)
P3 = P5 = image(Pg, h, Cells)

(b) Program B

Figure 1.5: DPL programs solving the constraints in Figure 24

Regent that computes partitions of regions at runtime. The main idea in DPL is that
some partitioning operators, such as equal, create partitions of regions directly, while
others compute a new partition as a function of an existing partition (thus the name
dependent partitioning language). Sophisticated data partitions can be constructed
by composing the small set of primitive DPL operators.

In Figure 3, program A derives P, P3, and P5 from equal partitions of P, and
Py; the equal operator creates a complete partition of a region with (approximately)
equal size subregions. Partitions P,, P; and P; use image partitions to satisfy the

partitioning constraints. The image operator uses an existing partition and a function

£(i) = (1 +1)%5

0| PIo] P'[1] |0 0| P[O] P[0} |0
1| PI[o0] P'o] |1 1| P[0 P'0] |1
2| PI0] P'0] |2 2| P[0] P'[1] |2
3| P[] P'0o] |3 3| PI1 P'1] |3
4| PI1] P'1] |4 4| P[] P'0] |4
(a) P = image(P,f,—) (b) P! = preimage(—,f, P)

Figure 1.6: Image and preimage operators

CHAPTER 1. INTRODUCTION 10

to define a compatible partition of a region. For example, if P, = (rq,...,r,), then the
statement Py = image(P,,h,Cells) creates P3 = (h(ry),...,h(r,)), where h(r;) C
Cells. Figure [CBa gives a visual representation of the image operator: The region on
the left is already partitioned into two subregions, indicated by the sets of light and
dark elements. The image of function £ mapping elements of the left-hand region to
elements of the righthand region then defines two subregions of the righthand region.

Program B implements a different strategy, first creating an equal partition of
Cells for both P, and P;. Note that P; is assigned a complete partition even though
the partitioning constraint does not require it to be complete; as long as P, con-
tains the image of Particles[].cell, it can have extra elements. To construct the
partition P, from the already defined P,, program B uses the preimage operator.
As illustrated in Figure [[6H, preimage takes an existing partition of the region on
the righthand side and constructs a compatible partition using the preimage of the
function; i.e., if the provided partition is (rq,...,r,) and the function is h, then the
computed partition is (h™(ry),...,h7'(r,)). Finally, P; and Ps are computed using
the image of P, under h.

Without any prior knowledge about Cells and Particles, it is not clear whether
the partitioning strategy in Figure [Cha or Figure [CAA is better. Program A has an
additional pair of partitions of Cells, which is not necessarily worse than program B
if communication due to the extra partitions is justified; in a scenario where spatial
distribution of the particles is significantly skewed, program B can suffer from load
imbalance in the first loop in Figure 3, whereas program A is immune to this issue
because the subregions of P, have equal size. On the other hand, if the particles in
each subregion of P; are spread throughout the domain, each subregion of P, can be
as big as Cells, leading to excessive communication.

Given that we cannot identify an optimal DPL program that satisfies the con-
straints at compile-time, we use heuristics to guide the constraint resolution process.
For example, when a given set of partitioning constraints admit multiple DPL pro-
grams, our constraint solver chooses the one with the fewest partitions (program B
in this example). This approach does not always produce satisfactory solutions when

important information about the execution context is missing. Programs also often

CHAPTER 1. INTRODUCTION 11

parallel for i in pParticles:
for p in pParticles[i]:

new_cell = locate(pParticles[i] [p].pos)

if pParticles[i] [p].cell != new_cell:
pParticles[i] [p].cell = new_cell
find j such that new_cell € pCells[j]
if i 1= §:

send pParticles[i] [p] to pParticles[j]

assert (image (pParticles,Particles|:].cell,Cells) C pCells)

Figure 1.7: Pseudo-code example with a user-provided constraint

have parts that are hard to auto-parallelize well, or may not be possible to auto-
parallelize at all. Our approach can gracefully handle these situations by allowing
programmers to provide additional constraints encoding knowledge of which strate-
gies are best and/or existing partitions used outside the scope of auto-parallelization.
For example, if the loops in Figure I=3 were embedded in an outer loop where parti-
cles’ pointers to cells are updated every iteration, the DPL program in Figure [ChH
would need to repartition Particles every iteration to reflect the updates. If only a
few particles change cells on each iteration, then repartitioning the entire Particles
region is wasteful. A simple way to mitigate this inefficiency is to exchange parti-
cles manually; the pseudo-code in Figure 4 sends a particle to the right “owner”
whenever the cell to which the particle moves belongs to a subregion different from
the current one. The most important part in this pseudo code is the assertion at
line 10 specifying the invariant on pParticles and pCells, i.e., that the subregion
pCellsli| contains all the cells pointed to by the particles in pParticles[i]. The con-
straint solver uses this assertion to discharge all partitioning constraints in Figure [
except those on P3 and Ps, for which the solver emits the following DPL program
using pCells to derive P and Ps:

P; = P; = image(pCells, h, Cells)

This example demonstrates the key benefit of constraint-based approaches that sep-

arate specification from implementation [R]; as long as the manual particle exchange

CHAPTER 1. INTRODUCTION 12

task F(R) reads(R),writes(R)
task G(R) reads(R),writes(R)

while *:
for i = 0, 2: F(A[il)
for i = 0, 2: G(A[h(iI)])

Figure 1.8: Example program

code maintains the invariant, the entire program mixing parts that are parallelized

by different means is correct.

1.2 Dynamic Tracing

Task-based programs, whether hand-written or auto-generated by the constraint-
based approach in Section [, require a dependence analysis to be parallelized because
dependencies between tasks are implicit in those programs. A dependence analysis
is a process that converts a task-based program into a task graph, where all task
dependencies are materialized. A task graph is a DAG of tasks whose edges encode
task dependencies; the graph is used by runtime systems for concurrent task execu-
tion on distributed memory machines. A constructed task graph can be executed by
continuously exhausting “ready” tasks in the graph, i.e., by repeatedly removing and
executing a set of tasks with no predecessors until the graph becomes empty.
Runtime systems perform this dependence analysis dynamically to get accurate
dependencies. For example, the program in Figure IR issues four tasks F(A[0]), F(A[1]),
G(AL(0)]), G(A[h(1)]) for every iteration of the while loop, where the opaque function
h hampers any attempt to statically analyze dependencies between these tasks. In
contrast, precise dynamic dependence analysis is straightforward. For example, if
h(0) = 1 and h(1) = 0, dynamic dependence analysis shows there are dependencies
between F(A[0]) and G(A[h(1)]), and between F(A[1]) and G(A[h(0)]). Note that task
declarations at lines 1-2 are annotated with permissions describing how tasks F and G

access the region argument x, which allows the dynamic dependence analysis to infer

CHAPTER 1. INTRODUCTION 13

Trace 0 Trace 1
7\ 7\

™\ 7~ ™~

FO(A[0]); F(A[1]7); G°(A[1]); G°(A[0]); F* (A[0]*); F* (A[1]"); G* (A[1]*); G* (A[0]);

F2(A[0]*); F2(A[1]7); G2 (A[1]*); G*(A[0]); - - -

~
Trace 2

Figure 1.9: Traces of the program in Figure I3

dependencies without introspecting task definitions. Many implicitly parallel tasking
paradigms use permissions for this purpose [0, [, 17, 80, 43, 58, 64].

Unfortunately, this dynamic dependence analysis often becomes a performance
bottleneck. The cost of dynamic dependence analysis might be hidden by running
the analysis in parallel with the application, but only when the cost of analyzing
a task is on average less than the task’s execution time [I[7]. The cost of dynamic
dependence analysis therefore places a lower bound on the granularity of tasks that
can be handled efficiently and how well applications strong scale. To avoid limiting
performance, dynamic dependence analysis must be as efficient as possible.

Dynamic tracing reduces the overhead of dynamic dependence analysis by avoiding
redundant analyses for traces of tasks, which are simply sequences of tasks issued by
the program. Programs often have a trace of tasks that occurs repeatedly. For
example, the while loop in Figure IR issues a trace of two F tasks and two G tasks
in each iteration. For the same trace of tasks the dynamic dependence analysis often,
but not always, produces the same task graph. The key idea in dynamic tracing is to
capture the task graph for such traces and reuse it to replace the trace’s dependence
analysis whenever possible.

However, care must be taken when reusing a captured task graph because data de-
pendencies on distributed memory machines may require data movement. Figure 9
shows an example sequence of tasks issued by the program where traces are anno-
tated. We use node identifiers «, 3, etc. as superscripts to regions to distinguish
different instances of the same region on different nodes. In Figure 9, for example,
the task F°(A[0]%) uses an instance of the region A[0] on node a, whereas G°(A[0]”)

CHAPTER 1. INTRODUCTION 14

Fo(A[0]) FO(A[1)7) F(A[0]") F*(A[1)?)
[A10)° « alop] [al2)" « A1) [a10)° « afop] (A1) A1)
e e
GO(A[1]*) G°(A[0)?) G (A[1]%) G*(A[0)?)
(a) Trace 0 (b) Trace 1

Figure 1.10: Task graphs for traces in Figure 9

uses an instance of that region on node . Tasks execute on the node where their
arguments are placed and we use superscripts on their names to differentiate multiple
invocations of the same task. Because for each value of i, the tasks F(A[i]) and G(A[i])
execute on different nodes, and since F(A[i]) writes to A[i], the updated value of A[i]
must be copied to the node where G(A[i]) will run; for example, the task graphs for
traces 0 and 1 in Figure 10 have such copies. (Note that misaligned region accesses
in this example rarely occur in realistic scenarios and are presented only to discuss
salient issues in dynamic tracing.) Furthermore, unlike the task graph for trace 0, the
task graph for trace 1 has additional copies prepended to tasks F(A[0]) and F(A[1])
because of their data dependencies on G(A[1]) and G(A[0]) in the previous trace. This
difference demonstrates that task graphs for the same trace can be sometimes differ-
ent when the set of valid instances, i.e., instances that contain the last changes made
to regions, are different. Therefore, to safely replay a captured task graph, dynamic
tracing must also record valid instances at the point where that graph is captured
as the precondition and check the validity of instances in this precondition before re-
playing the graph. Having the task graph from trace 1 recorded, dynamic tracing can
replay this graph from trace 2 onward as all of those traces satisfy the precondition.

Dynamic tracing must also cope with changes in the mapping between regions and

instances. Suppose now that in trace k£ the choices of nodes for the regions of tasks

CHAPTER 1. INTRODUCTION 15

Trace 0 Trace k
7\ 7\

~

FO(A[0]); F(A[1]7); GO(A[1]"); 6°(A[0]); -+ - s F¥(A[0]*); F*(A[1]7); G*(A[1]°); G¥(A[0]*);

F*"* (A[0]%); F*"* (A[1]%); G*"*(A[1]7); G (A[0]); - -

(. /

~
Trace k+1

Figure 1.11: Traces after mapping change

G(A[h(0)]) and G(A[h(1)]) are swapped as shown in Figure II0. Trace k then looks
different from the first kK — 1 traces because the mapping of the instances has changed,
leading dynamic tracing to reject replaying the capture of trace 1 and instead capture
a new trace. Figure 123 shows the task graph for trace k. However, dynamic tracing
cannot replay the graph from trace k for trace k + 1 either because trace k + 1 does
not pass the precondition check; the capture from trace k requires instances A[1]* and
A[0])” to be valid while trace k+1 sees A[1]” and A[0]* as valid instances. (Figure [T7H
shows the task graph for trace k 4+ 1.) Dynamic tracing will also need to capture the
graph for trace k+ 1 and will be able to replay it starting with trace k + 2, assuming

the precondition remains satisfied.

T
F*(4[0]°) [Peao) ()
G*(al1)’)

v v
G (4[0]°) r1a0) (e al))

(a) Trace k (b) Trace k+ 1

Figure 1.12: Task graphs for traces k and k + 1

CHAPTER 1. INTRODUCTION 16

1.3 Contributions

This work makes two key contributions:

e Chapter B presents a constraint-based approach to automatic data partition-
ing. To the best of our knowledge, our constraint-based auto-parallelizer pro-
vides precise control over the auto-parallelization process in the way that no
existing work does, which is key to both composability and tunability for auto-
parallelized programs. We evaluate the implementation of our constraint-based
approach using the Regent compiler [64] (Section BH). For a set of Regent
programs that are already hand-optimized for distributed memory execution,
their sequential counterparts auto-parallelized in our approach achieved com-
parable performance (within 5%). We also demonstrate with a case study on
Soleil-X [2,68], a multi-physics solver for a particle-laden turbulent flow problem,
that the composability of auto-parallelized programs enabled by our approach

provides a path to embracing auto-parallelizers in practice (Section BH).

e Chapter @ describes dynamic tracing. To the best of our knowledge, dynamic
tracing is the first technique to just-in-time specialize task graphs in distributed
task-based runtimes with dynamic dependence analysis. We present a complete
design of dynamic tracing with several key optimizations (Sections BI-A-32).
For five already optimized Legion applications, we demonstrate that our im-
plementation of dynamic tracing for the Legion runtime [I7] improves strong
scaling performance up to 7.0x, and by 4.9x on average, when running on
up to 256 nodes (Section B). We also demonstrate that dynamic tracing im-
proves strong scaling performance of S3D-Legion [[70], an exascale software for

turbulent combustion simulation using the Legion runtime (Section B273).

Chapter 2 provides a background on the implicitly parallel tasking model used in this

dissertation. We discuss the related work in Chapter B and conclude in Chapter B.

CHAPTER 1. INTRODUCTION 17

1.4 Publications

Materials in Chapters B and B are modified and revised from their original publica-
tions [61,62], in collaboration with Elliott Slaughter, Michael Bauer, Sean Treichler,

Manolis Papadakis, Todd Warszawski, Michael Garland and Alex Aiken.

Chapter 2
Programming Model

In this chapter, we describe the implicitly parallel tasking model used in this dis-
sertation. Our tasking model is based on Legion [I7], a data-centric programming
model for implicit task parallelism, and therefore borrows most of the concepts from
it. Example programs in this and the following chapters are written in a variant of
Regent [64], a high-level programming language for the Legion programming model.
Many of the abstractions in our programming model can be also found in other im-

plicitly parallel tasking models 10,30, 43].

2.1 Tasks and Regions

In our programming model, a program is decomposed into tasks. A task is a unit
of computation, and, as is standard, tasks are distinguished functions in a program
(using the keyword task). Figrue 2 shows an example program with three tasks T1,
T2 and T3.

Tasks store data in regions, which are collections of values. All elements of a region
have the same type, and every element has a unique index. The set of indices for which
a region has elements is the indez space of that region. We write ispace(R) to denote
the index space of the region R. For example, the program in Figrue 21 uses regions
A, B, C, L and R, with the usual constructs to access the elements (e.g., the expression

A[i] at line 5) and to loop over the indices (e.g., the statement for i in A: at line

18

CHAPTER 2. PROGRAMMING MODEL 19

fun r(x): x + 1

task T1(A):
for i in A:
A[i]l = £(i)

task T2(B, A, L):
for i in B:
left = L[i]; right = r(i)
B[i] = g(A[left], Alright])

task T3(C, B, R):
for i in C:
range = R[i]; sum = 0
for j in range:
sum += B[j]
C[i] = sum

Figure 2.1: Example program

4). Only the assignments to regions in a task have side effects visible to other tasks;

all the other task arguments are passed as values.

2.2 Partitions

Regions can be partitioned in our programming model. A partition of a region is
an indexed collection of subregions, sub-collections of that region. Partitions are
first-class objects and they can be passed freely between tasks. One region can have
multiple partitions and they all serve as different views of the same data stored in
the region; any updates made with one partition must be visible to all the other
partitions. The index of a subregion is called the color and the set of all colors in a
partition is the color space of that partition.

Programs construct partitions at runtime. Partitioning code is described in the

Dependent Partitioning Language (DPL) [[71], a domain-specific language for data

CHAPTER 2. PROGRAMMING MODEL 20

partitioning. Figure 222 shows the syntax for a subset of DPL used in this disserta-
tion. The equal operator creates partitions without using any other partitions; the
expression equal(R,N) creates a partition of R with N subregions having approxi-
mately equal size. The union, intersection, and difference operators on partitions are
applied subregion-wise; for example, a union of two partitions results in a partition

whose ith subregion is a union of the ¢th subregions of the operands:
(El & EQ)[’L] £ El[l] < EQ[Z] where © € {U, ﬂ, —}

The image operator creates a partition of a function’s range from an existing partition
of the function’s domain; the expression image(FE, f, R) is a partition of R derived

from F using f as follows:
image(E, f, R)[i] = {(f(k),v') € R| (k,v) € E[i]}.

(Note that the function f takes the indices of each subregion as arguments, not its
values.) We treat the regions used in indirect accesses (e.g., the region L in Figure P71)
as functions; such a region R is written R[-] in the image expressions. We use a symbol
fip for the identity function, i.e., fip(x) = x. The preimage operator is an inverse of
image, i.e., deriving a partition of a function’s domain from an existing partition of
the function’s range; the expression preimage(R, f, F) is a partition of f’s domain R

derived from E as follows:
preimage(R, /, E)[i| 2 {(k,v) € R| (f(k),v) € Eli]}.

Figure @ visualizes the image and preimage operators for an example function f.
Programs often use functions that map a single index to a set of indices to express a
one-to-many relationship. For example, the region R in Figure 21l maps each index

in C to a set of indices in B. We define generalized image and preimage operators

Regions R Partitions P Functions f, F

Expressions E 1= P |equal(R,N)|EUE|ENE|E—-FE
| image(F, f,R) | preimage(R, f, E)

| IMAGE(E, F,R) | PREIMAGE(R, F, E)

Figure 2.2: DPL syntax

CHAPTER 2. PROGRAMMING MODEL 21

pAl = equal(A, N1)

pB2 = equal(B, N2)

pA2L = image(pB2, L[|, A)
pA2R = image(pB2, r, A)
pA2 = pA2L U pA2R

pL2 = image(pB2, fip, L)

pC3 = equal(C, N3)
pB3 = IMAGE(pC3, R[], B)
pR3 = image(pC3, fip, R)

Figure 2.3: Example DPL program

IMAGE and PREIMAGE that derive partitions using such functions (ranged over by the
variable F'):

IMAGE(E, F, R)[i] £ {(l,v') € R| (k,v) € E[i] ANl € F(k)}
PREIMAGE(R, F, E)[i] = {(I,v') € R | (k,v) € E[ij ANk € F()}

The image and preimage operators are indeed a special case of these operators; for

example, with a lifting f; of a function f such that fi(xz) = {f(z)}, we have
image(F, f, R) = IMAGE(E, f;, R).

Figure shows a DPL program that creates partitions for the regions A, B, and
C in Figure 2711, whose example run is depicted in Figure 2Z4. Rectangles in Figure 22
correspond to elements in regions. The rectangles on the right side are filled with
colors of the subregions to which their element belongs; rectangles with multiple colors
represent elements included in more than one subregion.

An example task that uses the partitions in Figure 223 to launch the tasks in
Figure 271 is shown in Figure 23; the main task launches tasks for all colors in the
color spaces using parallel for loops and accesses subregions of the partitions with

index expressions.

CHAPTER 2. PROGRAMMING MODEL 22

Regions Partitions

A B C pAl pB2 pA2L pA2 pL2
ol] o 0 0 0 0
1] 1 1 1 1 10]
2| 2 2 2 2
30 3 3

L R

— C3 B3
0[3] o[Mo,1] = ;
1[o] 1[01,2] ,
n 1 » 1 Colors: 1

1] 2

Figure 2.4: Example partitions from the program in Figure 2Z3. Values of the regions
A B, and C are elided as they are not used in partitioning.

task main():

-- Region creations

-- The DPL code in Figure P3

parallel for c in pAl:
T1(pA1[c])

parallel for c in pB2:
T2(pB2[c], pA2([c], pL2[cl)

parallel for c¢ in pC3:
T3(pC3[c]l, pB3[c]l, pR3[cl)

Figure 2.5: Example of parallel task launches

2.3 Execution Semantics

In our programming model, a program has sequential semantics; i.e., a program yields
the result as if all tasks in that program executed sequentially in program order. For
example, for the partitions in Figure 24 any (potentially parallel) execution of the

program in Figure ZZ3 must be equivalent to running the tasks in the following order:

T1(pA1[0]); T1(pA1[1]); T1(pA1[2]); T2(pB2[0], pA2[0], pL2[0]); T2(pB2[1], pA2[1], pL2[1]);
T2(pB2[2], pA2[2], pL2[2]); T3(pC3[0], pB3[0], pR3[0]); T3(pC3[1], pB3[1], pR3[1]);

CHAPTER 2. PROGRAMMING MODEL 23

task T(R, S):
R[1] = S[0]
R[2] = S[1]

task main():
A = region(int, 3)
T(A, A)

Figure 2.6: Example of ill-behaved task instances

Any system that implements our programming model must guarantee sequential se-
mantics for programs.

Before a task can run, all of the task’s region arguments must be mapped to region
instances. A region instance is a physical allocation of a region. One region can be
mapped to multiple instances, most commonly when tasks sharing the same region
run on different nodes, and one instance can serve multiple subregions of a region.
An invocation of a task whose regions are mapped is a task instance. The mapping
does not change during execution of a task instance, but can be different in different
task instances of the same task. Every program has a mapper, a program component
that makes mapping decisions for tasks according to some (possibly dynamic) policy.

Any access to a region in a task must be coherent regardless of the mapping
decision. If a task instance updates a region instance of a region R, any subsequent
task instances reading region instances of a region that intersects R must see the
update. For example, all task instances of T2 at line 7 in Figure 223 must see all the
updates to the region A made by the task instances of task T1 at line 5, regardless of
the mapping for the partitions pA1l and pA2, which partition the same region A. In
our programming model maintaining coherence is the responsibility of the runtime
system. The program specifies what data is to be used, and the runtime system
manages coherence by generating copies and inserting synchronization to ensure the
data is current when and where it is needed.

To avoid fine-grained management of coherence during execution of task instances,
we require every task instance to be well-behaved. A task instance is well-behaved

unless it uses multiple overlapping region instances and updates at least one of them.

CHAPTER 2. PROGRAMMING MODEL 24

read-write
read write reduce+ }

o

no permission

Figure 2.7: Permission lattice

The program in Figure 28 shows an example of ill-behaved task instance; if the task
instance at line 7 uses two different instances A% and A” for its region arguments (i.e.,
{R > A% S+ A”}), the runtime system must transfer the update to A% at line 2 to A?
before the assignment at line 3 executes. This assumption simplifies the management
of coherence by avoiding the need to deal with multiple aliased regions within a single

task.

2.4 Dependence Analysis

A parallel schedule of task instances has sequential semantics if it respects all depen-
dencies between those task instances. Task instances have a (data) dependence if
they access regions that overlap with each other and at least one of them updates the
region. A dependence analysis of a program is a process to identify all dependencies
between task instances.

The runtime system that implements our programming model performs this de-
pendence analysis dynamically with a pipeline of phases. First, a program launches a
sequence of task instances and submits them to the runtime system. The runtime sys-
tem then analyzes dependencies between task instances and constructs a task graph.
A task graph is a DAG of task instances whose edges encode dependencies. Lastly,
task instances are scheduled on processors according to their topological order in the
constructed task graph.

To facilitate dependence analysis, tasks are annotated with permissions on regions,
which describe how tasks access data. With permissions the system can analyze

dependencies between task instances without introspecting task definitions, assuming

CHAPTER 2. PROGRAMMING MODEL 25

that the tasks respect their permission annotations. A task can have read, write,
read-write, or reduction permissions on a region. Reduction permissions are used
when tasks update regions only using commutative and associative operators. When
a task has multiple permissions on a region, those permissions are joined; a set of
all possible permissions on a region forms a lattice, shown in Figure 224, where the
top element is the read-write permission and reduction permissions with different
operators are different elements. For example, if a task has reduction permissions
on a region R with the + and * operators, the joined permission on R is read-write
permission. Task instances of a task inherit the task’s permissions on regions to their
region instances. Figure 8 shows permission annotations for the tasks in Figure 2.

Commutativity and associativity of reduction operators can be exploited by the
runtime system to extract additional parallelism. A reduction is semantically equiv-
alent to a read access followed by a write access; i.e., a reduction statement x += y
has the same meaning as a statement x = x + y. However, the reduction contribu-
tion y can be computed without reading the value of x. Hence, if there are multiple
reductions to the same element in a region, their contributions can be independently
calculated in parallel and later applied atomically to that element. This extra paral-
lelism is useful when individual reduction contributions are expensive to compute and
thus desirable to parallelize. Figure 29 shows how this parallelism can be exploited
by keeping buffers of reduction contributions. Note that the commutativity and asso-
ciativity of the + operator allows the reduction contributions from the tasks T and S
to be applied out of order and still produce the same result as the program order ex-
ecution of those tasks. Many distributed memory runtime systems handle reductions
in this way [I7,80,60]. We assume that if a task has reduction permission on R, all
of its task instances use a fresh instance I for R as a reduction buffer, initialized with

the identity value of the reduction operator.

task T1(A) writes(A)
task T2(B, A, L) writes(B), reads(A), reads(L)
task T3(C, B, R) writes(C), reads(B), reads(R)

Figure 2.8: Permission annotations for the tasks in Figure 2711

CHAPTER 2. PROGRAMMING MODEL

26

task T(R) reduces+(R): for e in R: R[e] += f(e)
task S(R) reduces+(R): for e in R: R[e] += g(e)
task main():
T(R); S(R)
R R R
Without 0 T(R) 01£C0) S(R) 0[£C0)+g0)
ithou
buffers 0] ----- >1[£f() | ----- ~1 [£(1)+g(1)
0 21£(2) 21£(2)+g(2)
f e
TR 0[£C0) o
***** »1 [£(1)
2[(2) R R R
With 0 0gC0)| 0|£0)+g(0)
i <
buffers 0 @18 Q1M +g)
0 K 21g(2) 21£(2)+g(2)
S(R) 01(g0) ,
fffff ~1|g(1) Pt
21g(2)

Figure 2.9: Handling reduction using reduction buffers

Another responsibility of the dependence analysis is to maintain coherence of

region instances. The runtime system must keep track of validity of region instances

(i.e., whether the region instance contains any of the last updates to the region)

and introduce copies between region instances whenever necessary. Because of a

potential many-to-many relationship between subregions and region instances, the

validity must be tracked at the granularity of individual indices in the index space.

We use a simple but inefficient algorithm that updates the validity of instances by

applying the following sequence of rules to each task instance:

R When the task instance reads a region R using an instance I,

R; If I is already valid for the entire ispace(R), no data movement is intro-

duced.

CHAPTER 2. PROGRAMMING MODEL 27

Redl

Red2

R If I is not yet valid for some subset X of ispace(R), then [is made valid
by issuing copies from existing instances that are valid for some indices in
X to I. Each of the issued copies is treated as a task instance that reads
from the source instance and writes to I, except it does not invalidate

valid instances. The instance I is marked valid for the entire ispace(R).

If the task instance reads a region R using an instance I and there are out-
standing reduction instances for some subset X of ispace(R), those reduction
instances are applied to I. Each reduction application is treated as a task in-
stance that reads from the reduction instance and writes to I; i.e., it makes
I the sole valid instance for all indices in X and invalidates other instances,

including outstanding reduction instances, for any indices in X.

If the task writes to a region R using an instance I, then I becomes the sole valid
instance for the entire ispace(R). All the other instances, including outstanding

reduction instances, are invalidated for any indices in ispace(R).

If the task reduces to a region R using an instance I, then [is simply recorded

as an outstanding reduction instance for all indices in ispace(R).

Figure 210 demonstrates the dynamic dependence analysis using a simple exam-

ple. In addition to task instances, the task graphs in Figure 211 have nodes for copies

and reduction applications:

e A copy S? < R® copies elements from the source instance R® to the target

instance S” for indices in ispace(R) Nispace(S). For example, a copy B® <+ B®
is introduced by the task instance T,(A”,B?) because the region instance B is

not yet valid for the region B.

A reduction application S? « S% o R® applies reduction contributions in the
reduction instance R® to the target instance S? using the o operator for indices
in ispace(R) N ispace(S). For example, a reduction application A% <— A%+A” is
necessary for the task instance T.(A% B%) to make coherent read access to the

region A with the region instance A®.

CHAPTER 2. PROGRAMMING MODEL 28

Tasks: task T,(R,S) reads(R),writes(R),writes(S)
task Ty(R,S) reduces+(R),reads(S)
task T.(R,S) reads(R),reads(S),writes(S)

Valid Instances
Task Instance - , Task Graph
Outstanding reductions

A— A% (rule R;,W)

“, B T.(A%, B®
Ta(A%,B%) B— BY (rule W) ()
T.(A* B%)
A A®
To (A%, BY) B+ {B?,B*} (rule Ry)
A AP (rule Redy)
Ty (A%, B%)
[Ta(a B) | —{r.(a %))
v
T, (A%, B%) A— A% (rule Ry) [5 a]\[‘a Ta ﬁ]
Al B BY (rule Ry,Red,) BB (M ATA
v
T (A%, BP)

Figure 2.10: Example dependence analysis. Changes after the analysis of each task
instance are highlighted with shading. The regions A and B in this example have no
overlap and different region instances of the same region are distinguished by their
superscripts.

Note that the last task graph has edges for transitive dependences, i.e, dependences
that are transitively expressed by other dependencies. For example, the edge be-
tween the task instance T,(A%,B*) and the reduction application A% < A%+A” repre-
sents a transitive dependence as they are already connected by another path that
goes through the task instance T, (A%, B?). Transitive dependences are not harmful for
parallelism, because they impose no additional constraints, and dependence analysis
algorithms often include them in the result as additional analysis would be required
to remove them. We assume that task graphs may have edges for transitive depen-
dencies.

Figure 2710 shows a task graph of the program in Figure 223 for an example run

CHAPTER 2. PROGRAMMING MODEL

T1(pA1[2]°)

29

[pAQ[O]O‘ “ pAl[o]a] [pA2[O]°‘ - pAl[Q]O‘] [pAQ « pA1[0 a] [pAQ « pA1[2

‘pAQ < pA10 ‘pAQ +— pAl[1
‘TQ pB2[1]%, pA2[1]*, pL2[1

[T2 pB2[0]*, pA2[0]*, pL.2[0 / \ T2 (pB2[2]%, pA2[2]®, pL2[2
pB3

[pBS — pB2[O]a pB3[O]a + pB2[1 ® + pB2[1 pBB ® + pB2[2]

(Ts(pcs[o], pB3[0]*, pR3[0] T3 (pC3[1]®, pB3[1], pR3|[1

Figure 2.11: Task graph of the program in Figure 23

using the partitions in Figure 2. In the task graph, each subregion argument R

to a task is mapped to a region instance R* on some node «. Note that the task

graph has a copy for each pair of subregions of different partitions of the same region

whenever those subregions overlap with each other. For example, the subregion pA1[0]

overlaps with all three subregions pA2[0], pA2[1] and pA2[2] of the partition pA2, hence
three copies originating from the task instance T1(pA1[0]*). Note also that the tasks

launched at each parallel for loop are all independent as those tasks write to

disjoint subregions without reading others’ updates.

Chapter 3
Automatic Data Partitioning

Data partitioning is an essential step in extracting data parallelism implicit in sequen-
tial programs. Once we have legal data partitions for a data parallel loop, the rest
of the parallelization is simply to convert the loop into a form that launches paral-
lel tasks for subregions of those partitions, each of which runs a subset of the loop
iterations using its subregion arguments. The parallelism exposed by those tasks is
later discovered and realized by the runtime system of our implicitly parallel tasking
model. The goal of the auto-parallelizer then boils down to finding performant data
partitions that are legal for the whole program to be parallelized.

In this chapter, we present a constraint-based approach to automatic data parti-
tioning. Our approach finds performant legal data partitions for a program in two
steps. First, we soundly capture a set of possible legal partitions for a program us-
ing partitioning constraints. Partitioning constraints are inferred automatically by a
static analysis of region accesses in parallelizable loops (Section Bl). Second, we run
a constraint solver that synthesizes DPL programs as solutions to the inferred parti-
tioning constraints (Section B2). The constraint solver finds a performant solution
that satisfies a give system of partitioning constraints with fewest data partitions. We
also perform optimizations on DPL programs to minimize data movement for reduc-
tions (Section BZ3). The implementation of our approach in the Regent compiler [64]
(Section B4) demonstrates that programs auto-parallelized in our approach have scal-

ability comparable to hand-optimized counterparts (Section BH). Furthermore, the

30

CHAPTER 3. AUTOMATIC DATA PARTITIONING 31

Regions R Partitions P Functions f, F
Constraints C == ¢|ECE|CAC
Predicates ¢ := PART(E,R)|DISJ(E)| COMP(E,R)

Plequal(R)| FUE|ENE|E—-F
inage(F, f, R) | preimage(R, [, F)
IMAGE(E, F, R) | PREIMAGE(R, F, E)

Expressions FE

Figure 3.1: Constraint language syntax

application of our approach to Soleil-X [2,68] showcases that the composability of auto-
parallelized programs enabled by our approach is key to embracing auto-parallelizers

in practice (Section BM).

3.1 Constraint Inference

We first define a constraint language for describing partitioning constraints. Figure B
shows the syntax of the partitioning constraint language. Ground terms are regions
(using symbol R) and partitions (using symbol P). A partitioning constraint is a con-
junction of subset constraints and predicates on partitions. A predicate PART(E, R)
means that F is a partition of the region R; i.e., each subregion E[i] must be a subset

of the region R:
PART(E, R) £ Vi.E[i| C R.

A predicate DISJ(E) requires E to be a disjoint partition and a COMP(E, R) re-

quires F to be a complete partition of R:
DISJ(E) £ E[[JNE[j] = @ wheni#j COMP(E,R) = |J,Eli]=R

A subset constraint £y C FE, denotes that each subregion Es|i] contains the corre-

sponding subregion Fi|i]:
E, C Ey, 2 Vi. E\[i] C Eyli]

This relation implicitly requires that the set of indices of Ey subsume that of F;. The

subset constraint is anti-symmetric, i.e.,

CHAPTER 3. AUTOMATIC DATA PARTITIONING 32

Algorithm 1: Constraint inference algorithm

1 Procedure Infer (loop):

2 // Assume loop has the form for i in R:body
3 // Assume body is normalized
4 Env < {i — Ar.image(Px, fip,7)} (P is fresh)
5 Rgn < {i+— R}
6 C <+ PART(”,R) A COMP (P, R)
7 for each statement s € body do
8 // Region accesses appear only in statements of these forms:
9 if s is y = S[x] or S[x] =y or S[x] +=y:
10 E + Env(x)(8)
11 C <+ CANPART(P,S)NECP (P is fresh)
12 if s is y = S[x]:
13 Env < Env U {y — Ar.image(P, S[-],r)}
14 Rgn < Rgn U {y — S}
15 elseif s is S[x] += y and Rgn(x) #R:
16 | C«+ CADISJ(R)
17 elseif s is y = f(x) or y = F(x) :
18 Ry < Rgn(x)
19 E <+ Env(x)(Ry)
20 C <+ CANPART(P,R,)NECP (P is fresh)
21 if s is y = £f(x):
22 | Env < Env U {y — \r.image(P, f,r)}
23 elseif s is y = F(x) :
24 | Env < EnvU {y — \r.IMAGE(P,F,7)}
25 Rgn < Rgn U {y — R}
26 elseif s is y = x :
27 Env < Env U {y — Env(x)}
28 Rgn < Rgn U {y — Rgn(x)}

FEi=FEy,2 E, C EyNFEy, CFj.

Expressions are DPL operators from Figure Z2. Integer arguments denoting the
number of subregions are elided in partitioning constraints because they do not affect
constraint solving. Note that our constraint language can express DPL programs; a
DPL statement P = E is expressible with antisymmetry and a DPL program is just
a sequence of DPL statements.

Algorithm @ shows the constraint inference algorithm, which takes a loop and

CHAPTER 3. AUTOMATIC DATA PARTITIONING 33

produces a system of partitioning constraints. The algorithm is concerned only with
parallelizable loops. A loop is parallelizable when values defined in one loop iteration
are never consumed by other iterations of the same loop. For brevity, we characterize

parallelizable loops syntactically as follows.

e Region accesses are either centered or uncentered. A region access R[e] is

centered when e is the loop variable (or an alias), and is uncentered otherwise.

e An uncentered access is admissible only when it has an index expression derived
from another region access (e.g., R[S[e]]) or it has the form R[f(i)] where i

is the loop variable.

e A parallelizable loop is an outermost loop of the form
for i in R:

for some region R (the iteration space of the loop), which satisfies these condi-

tions:

— All write accesses to regions are centered. (A centered reduction is consid-

ered a centered read access followed by a centered write access.)

— A region with an uncentered reduction (e.g., R[S[e]l] += ...) does not

have any other read access or a reduction with a different operator.

— A region with an uncentered read (e.g., ... = R[S[e]]) does not have any

other write access.

This syntactic definition is sound but incomplete; i.e., there are loops that a more
sophisticated analysis, such as polyhedral analysis [Z1], can prove parallelizable but
our syntactic check cannot.

At the highest level, our method for constraint-based partitioning has three com-

ponents:

e Initially a separate partition (represented by a unique partition variable) is

assigned to every region access in a parallelizable loop. Another unique partition

CHAPTER 3. AUTOMATIC DATA PARTITIONING 34

Program Constraints

for i in R: PART(P;,R) ACOMP(P,R) A
j = R[i] PART(P,,R) AP, C P, A
v = £(S[j1) PART(P;,S) A image(P,,R[:|,S) C P53 A
R[i] = v PART(P4,R)/\P1§P4

Figure 3.2: Example of constraint inference

variable is associated with the loop index. For each of these variables, we
generate constraints that guarantee the partition will have all the elements

needed to execute correctly.

e We solve the constraints by rewriting them into an equivalent form where each
remaining constraint corresponds to a concrete dependent partitioning opera-
tion; the partitioning code can be read directly from the resolved form of the

constraints.

e Allowing a separate partition for every region access admits the widest possi-
ble range of partitioning strategies, but can result in solutions with multiple
equivalent partitions. We unify partition variables with isomorphic constraints

to reduce the final number of partitions that need to be created.

The following example illustrates the constraint inference steps for the example

loop in Figure B72.

Example 1. Algorithm O first conjoins the following predicates on a partition symbol

Py for the iteration space R (line 6):
PART(P;,R) A COMP(P,,R)

The algorithm also maintains two environments: Env that maps each variable to a
lambda function that returns an image expression of a region argument and Rgn that
maps each variable to the region from which the variable’s value was drawn. The
initial environments at lines 4-5 have mappings of the loop variable i to a function

Ar.image(Py, fip,r) and to the iteration space R, respectively. For the read accessR[i],

CHAPTER 3. AUTOMATIC DATA PARTITIONING 35

Program Constraints
for i in R: PART(F,R) A COMP(P,R) A
S[j]1 += ¢ PART(P,S) A image(F2, g,8) C P; A DISJ(P))

Figure 3.3: Example with a disjointness predicate on the iteration space

the algorithm introduces a partition symbol Py and generates the following constraints
(lines 9-11):

PART(Py,R) A P, C P,

Note that the expression image (P, fip,R) is simplified to Py. Since the value of this
region access is assigned to the variable j, the algorithm updates the environments

(lines 13-14), which then become the following:
Env = {i — Ar.image(P, fip,7),j — As.image(P»,R[|,s)} Rgn ={i—R,j— R}

For the uncentered read access S[jl, the algorithm infers the following constraints
on a new partition symbol Py (lines 9-11), where the subset constraint has an image

expression in the lower bound:
PART(Ps,S) A image(P,,R[:],8) C Ps

Finally, the write access R[i] = ... is handled similarly to other centered accesses,

resulting in the partitioning constraint in Figure 32.

Note that the partitioning constraint in Figure B2 does not have a disjointness
predicate on the partition of the iteration space. If the final solution uses a non-
disjoint partition of the iteration space, there is redundant computation because some
loop iterations are executed multiple times. This redundancy is useful in cases (as
demonstrated by Zhou et al. [76]) when recomputing loop iterations on separate nodes
is cheaper then the internode communication the redundant computation replaces. In
Section B33, we discuss how we can optimize communication from uncentered reduc-

tions using an aliased (non-disjoint) partition of the iteration space.

CHAPTER 3. AUTOMATIC DATA PARTITIONING 36

However, we do need a disjoint partition of the iteration space when the loop
has an uncentered reduction access (lines 15-16 in Algorithm M). Figure B=3 shows
an example where an uncentered reduction on the region S imposes a disjointness
constraint on the partition P, of the iteration space R. To see why disjointness is
mandatory in this case, we need to revisit how uncentered reductions are handled in
our programming model. Unlike centered reductions, which can be applied immedi-
ately, uncentered reductions require two steps. First, each distributed task allocates
a temporary instance to keep the reduction contribution from each iteration that it
owns. Then, temporary instances are merged, either eagerly or lazily, back to the par-
titions that the subsequent read accesses use. Because this merge step aggregates all
contributions in temporary instances, each contribution must be counted exactly once
to preserve the original semantics. Therefore, the iteration space must be partitioned
disjointly in this case.

Algorithm O runs in linear time in the size of the program and produces parti-
tioning constraints sound with respect to the semantics of parallelizable loops. These
partitioning constraints always have at least one trivial solution, obtained by replacing

each subset constraint with an equality.

3.2 Constraint Solver

In this section, we describe a constraint solver that takes partitioning constraints as
input and produces DPL programs as solutions. Our constraint solver transforms
the input partitioning constraint into a resolved form, the constraint conjoined with
exactly one equality P, = E; for each partition symbol FP;. Once the partitioning
constraint is solved, the added equalities form one solution program. In the rest
of this section, we explain the algorithm to resolve partitioning constraints and the

heuristics to minimize the number of partitions constructed by the output program.

3.2.1 Resolution

Conceptually, a partitioning constraint C' can be resolved by the following procedure:

CHAPTER 3. AUTOMATIC DATA PARTITIONING 37

L1 PART(equal(R), R) ADISJ(equal(R)) A COMP (equal(R), R)

L2 PART(P, R) APART(P,, R) = PART(P, o P,,R) (o€ {U,N,—})
L3 PART(image(E, f,R), R) L4 PART(preimage(R, f,E), R)
L5 PART(IMAGE(E, F,R), R) L6 PART(PREIMAGE(R, F,E), R)
L8 COMP(Ey, R) Vv COMP(E,, R) = COMP(E, U Es, R)

L9 COMP(F,, R) = COMP (preimage(Rs, f, E1), Rs)

L10 DISJ(E:) A B, C Ey —> DISI(E;)

L11 DISJ(E,)V DISJ(E,) = DISJ(E, N Es)

L12 DISJ(E;) = DISJ(E; — Es)

L13 DISJ(E, UE,) — DISJ(E;) A DISJ(E)

L14 DISJ(FE,) = DISJ(preimage(R, f, E1))

L15 Ey CEsANE, CEys— EyUE, CEy

L16 FE; C preimage(Ry, f, E2) A PART(FE,, Ry) = image(E), f, Ry) C Es

Figure 3.4: DPL lemmas for resolution

1. Synthesize expressions Fjy, ..., E, for all partition symbols P, ..., P, in C.

2. Check consistency of the strengthened constraint
CANPr=FE/N...\NP,=EF,.

3. If the consistency check fails, go to (1) and synthesize different expressions.

The consistency check in step (2) verifies that each predicate in the constraint is en-
tailed by other predicates or known lemmas of DPL operators, shown in Figure B3.
Any set of expressions that pass this check is a solution that satisfies the input con-
straint.

All lemmas in Figure B3 are direct consequences from definitions of the DPL
operators and properties of sets. The first six lemmas enumerate all possible cases
where partitions of a region R can be constructed. Lemmas L7-9 (resp. lemmas L10-
14) state when the completeness (resp. disjointness) of a partition is propagated to
others.

Algorithm B shows the constraint solving algorithm tailored to partitioning con-
straints inferred by Algorithm 0. This algorithm tries to minimize backtracking due to

adding an equation that causes the constraint system to become inconsistent (have no

CHAPTER 3. AUTOMATIC DATA PARTITIONING

38

Algorithm 2: Constraint solving algorithm

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32

Procedure Solve(C, S):

// C'is a partitioning constraint to solve.
// S is a partial solution found so far.

// Each call to Solve() picks one remaining constraint, adds
// an equality to attempt to solve it, and calls Solve()
// recursively to solve the rest of the system.
for each P=F € S do
// Replace P by E, eliminating P from the constraint C'
C <« C[Pw— E]
Remove all tautologies £ C FE from C
for each image(P, f,R) C E € C for a closed E do
// Assume IR PART(P,R') € C
Shpext < Solve(C,S A P = preimage(R’, f, F))
// If the system is not inconsistent (&), return the solution if
Snext # D : return S,
for each P with subset constraints F; C P for closed E;s do
Sheat < Solve(C, S AP =J, E;))
if Spexe # @ : return S,y
/ depth(P) = k when B, C --- C E, C P
or d = maz({depth(P;) | P, € C}),1 do
for each PART(P, R) ADISJ(P) € C s.t. depth(P) =k do
Shnest < Solve(C, S A P = equal(R))
if Syerr # D : return S,
for each P with a subset constraint P C E for closed E do
Sheat < Solve(C,SANP =FE)
if Syept # D : return S,y
for each COMP(P, R) € C do
Shpext < Solve(C,S A P = equal(R))
if S,ept # @ : return S,
// Lemmas in Figure B4 are used for this resolution
if VO, € C.C —Cyp = Cypp : return S
else: return g

=~

solutions). The solver picks promising candidates using the following insights based

on the lemmas in Figure B2:

CHAPTER 3. AUTOMATIC DATA PARTITIONING 39

1. If a partition symbol P has subset constraints £y C P, ..., E; C P where each
E; is closed, i.e., contains no partition symbol, the union E; U---U Ej of these

expressions is a good candidate for P (lemma L15).

2. The only way to create a fresh disjoint partition is the equal operator (lemma
L1) and only intersection, difference, and preimage operators preserve the
disjointness of operands (lemmas L11, 12, and L13). Therefore, a partition
symbol with a DISJ predicate must be created using only these operators. Like-
wise, complete partitions can be expressed only by equal (lemma L1), union

(lemma L8), and preimage (lemma L9), or combinations of these operators.

3. For a subset constraint £y C Es, disjointness “flows” from right to left (lemma
LL10). When both sides of a subset predicate F; C FE, must be disjoint, the

solver resolves all symbols in the expression E5 and then derives Ej.

4. The preimage operator can produce partitions that satisfy subset constraints
containing image (lemma 1.16). Combined with observation (2), these lemmas
imply that the solver must use a preimage partition to discharge a subset
constraint of the form image(FE;,...) C Fy when both E; and Es must be

disjoint.

Algorithm B can always solve partitioning constraints generated by Algorithm [
Because Algorithm [introduces a fresh partition symbol for the RHS of each added
subset constraint, the subset constraints never form a cycle. Thus, the solver can
always find a trivial solution that uses equal partitions for iteration spaces and
has equalities strengthened from all subset constraints. However, this naive solution
is inefficient because it does not reuse partitions from one parallelizable loop in the
others. To maximize the partition reuse in the solution, the constraint solver performs
unification of partition symbols, which is the topic of the next subsection.

The following examples demonstrate how Algorithm B resolves partitioning con-

straints.

Example 2. Suppose we have this partitioning constraint from Figure B3:

CHAPTER 3. AUTOMATIC DATA PARTITIONING 40

PART(P;,R) ACOMP(P;,R) ADISJ(P,) ANPART(P2,R) A P, C P,
A PART(Ps,S) A image(FP»,g,8) C P;

Because Py has a DISJ predicate, the solver uses an equal partition for Py (line 22).
After substituting P, with equal(R), the original constraint simplifies to:

PART(P,,R) A equal(R) C P, APART(Ps,S) A image(Ps, g,S) C Ps.

Since Py has a closed expression on the LHS of its subset constraint, the solver
strengthens it to a equality (line 17), yielding the following constraint after simpli-

fication.
PART(P;,S) A image(equal(R),g,S) C Ps.

Again, P3 has a closed expression on the LHS of its subset constraints and the solver
resolves it similarly. Finally, the solver produces the following solution (after per-

forming common subexpression elimination):
P, =equal(R) P, =P P;=image(P,g,9)

Example 3. Suppose now we have an extra predicate DISJI(Ps) in the partitioning

constraint as follows:

PART(P;,R) A COMP(P;,R) ADISJ(P;) APART(P;,R) AP, C Py
A PART(P;,S) A image(FPs, g,S) C P; A DISJ(P3)

The solver notices that P3, the RHS of the subset constraint image(Ps, g,S) C P,
must be disjoint, and creates an equal partition for Ps (line 22) and a preimage
partition for Py (line 14):

P3; = equal(S) P, = preimage(R,g, equal(S)).
In the remaining constraint
PART(P;,R) ACOMP(P,R) ADISJ(P,) A P, C preimage(R, g, equal(S)),

Py has a closed expression on the RHS of its subset constraint, and the solver strength-

ens it to an equality (line 24). The final solution is as follows:

P; = equal(S) P, =preimage(R,g, P3) P =P

CHAPTER 3. AUTOMATIC DATA PARTITIONING 41

3.2.2 Unification

A single unification step strengthens the original constraint by conjoining an equality

between unifiable partition symbols:

PART(P;, R) APART(Py, R) A . ..
= PART(P,,R) APART (P, R) NP, =P A . ..

Partition symbols are unifiable only when they represent partitions of the same region.
The constraint after unification can be further simplified by replacing one of the

unified symbols with the other.

Example 4. The partition symbols Py, P, and P, in Figure B2 can be unified as

follows:

PART(P,,Particles) A COMP(P,,Particles)
A PART(P;,Cells) A image(P, f1,Cells) C Ps.

Because unification can introduce equalities inconsistent with the original constraint,
the constraint after unification might not have any solution. For example, unification

can make some subset constraints recursive as follows:

PART(Pl, R) VAN PART(PQ, R) VAN image(Pl, f, R) Ch
PART(Pl, R) N image(Pl,f, R) g P1 A P1 = PQ.

This recursive constraint can be satisfied only by constructing a fixpoint of the func-
tion f, which is not expressible in our constraint language. Therefore, the goal of
unification is to find a maximal set of unifications that preserves consistency of the
partitioning constraint.

Finding all viable unifications requires an exhaustive search in the general case.
To make the search efficient, we focus on unifications that reduce the number of sub-
set constraints; intuitively, if unification between partition symbols eliminates some
subset constraints, the constraint after unification is no more difficult to resolve than
the original one. Such unifications manifest as isomorphic subgraphs in a graph that
represents a partitioning constraint. In this constraint graph each node corresponds
to a partition symbol, an unlabeled edge from P; to P, represents the subset con-

straint P, C P,, and an edge labeled with a function symbol f encodes the subset

CHAPTER 3. AUTOMATIC DATA PARTITIONING 42

Py Py
N e — h ——————— \
0) | [Pz[i] - Cells]—»[Pg[i] - Cells) |
S N e T /
£3CH®
P ver P P

1/ h \
[Pl[i] C Particles) l [P4[j] C Cells]—»[l%[j] C Cells) |

(a) Common subgraph

Py P;
h
a e\l [Pg[i] C Cells)—»(Pg[i] - Cells)
. c1es\vl’
e
P /

[Pl [i] C Particles]

(b) After unification (P = Py A Py = Ps)

Figure 3.5: Unification as a common subgraph problem

constraint image(P;, f, R) C P,. (Other cases need not be expressed by this graph,
because the inference algorithm only generates subset constraints of the two forms.)
[somorphic subgraphs in this graph correspond to partition symbols connected by the
same subset constraints (after renaming symbols). Thus, unifying partition symbols
in these isomorphic subgraphs also merges multiple subset constraints, one from each

subgraph, into one.

Example 5. Let us revisit the example in Section I1: Figure shows a constraint
graph for the following constraint (predicates are elided):
-+ A\ image(P;,Particles[].cells, Cells) C P,
A image(P»,h,Cells) C P; A image(Fy,h,Cells) C Ps.
In Figure 324, the subgraph of Py and Ps is isomorphic to that of Py and Ps. The
solver unifies Py and Py and P3 and Ps, with the result shown in Figure [3-20.

Algorithm B shows the constraint solver algorithm with unification. The algorithm

uses Algorithm B to check if the system of constraints after unification is still solvable

CHAPTER 3. AUTOMATIC DATA PARTITIONING 43

Algorithm 3: Constraint solver algorithm with unification

1 Procedure UnifyAndSolve(C; A ... ACy):
2 // Each C; is represented by a set of conjuncts
3 Sort C1,...,Cy in descending order of |C;]
4 C + Cl
5 for i =2, N do
6 C' Ci
7 while " # @ do
8 G <+ the next biggest common subgraph in C' and C’
9 ifG=0:
10 C«+—CANC
11 C'+ @
12 else:
13 U<+ Pl=P N...N\ Py = Pk induced by G
14 if Solve(CAC, U)# @ :
15 // Filter out unified terms
16 Cl(—C/[P{'—)Pl][PII(’—)PK]—C
17 return Solve(C, &)

(line 13). Although finding the largest common subgraph in a constraint graph (line
7) is known to be NP-complete [40], in practice unification is not a significant cost
as constraint graphs are small and we do not attempt to find the absolutely maximal
common subgraph. Furthermore, the algorithm greedily tries to unify the first few
largest subgraphs in a constraint graph (line 3), based on the observation that these
subgraphs often contain other smaller subgraphs. In the average case, common sub-
graphs can be identified simply by constructing a product graph of constraint graphs.
Assuming the unification succeeds in a constant number of trials, the asymptotic time
complexity of this greedy algorithm is O(N M?), where N is the number of constraints
to unify and M is the number of graph nodes.

3.2.3 External Constraints

As seen in Section [, programmers often have invariants on existing partitions used
in manually parallelized parts. The constraint solver can exploit these invariants by

adding them to the partitioning constraint for a program and holding their partition

CHAPTER 3. AUTOMATIC DATA PARTITIONING 44

symbols fixed (no expressions are synthesized for external constraints).

Example 6. The program in Figure TZ1 specifies an invariant on partitions pCells
and pParticles, which can be added to the partitioning constraint from Example H

as follows:

-+ A\ image(P;,Particles[].cells,Cells) C P,
A image(Ps,h,Cells) C P; A image(F),h,Cells) C P;
A image(pParticles,Particles|:].cells,Cells) C pCells

The solver finds unifications between P, and pParticles; P,, pCells, and P,; and
P3 and Ps, yielding the following constraint:

--- A\ image(pParticles,Particles[-].cells, Cells) C pCells
A image(pCells, h,Cells) C Ps.

Since the LHS of the subset constraint on Pj is closed, the solver strengthens it to an

equality and eventually produces this solution:

P, = pParticles P, = P, =pCells
P; = P; = image(pCells, h, Cells).

3.2.4 Generalized Image and Preimage

Some programs have loops where the iteration space is determined by values of a
region, typically arising in sparse matrix algorithms. The SpMV code using Com-
pressed Sparse Row (CSR) format in Figure B@ is one such example. In this code,
the matrix is represented by the region Mat where the field val contiguously stores
the non-zero values of the matrix and the field ind stores the column indices of those
non-zeros. The inner loop at line 3 then iterates over columns of the ith row in the
matrix using the value Ranges[i], a pair of lower and upper bounds of indices in
Mat.

These loops with data dependent iteration spaces require IMAGE and PREIMAGE
partitions that derive partitions using functions from indices to sets of indices. In
Figure B®al, the region Ranges maps each iteration of the outer loop to a set of

iterations of the inner loop, and thus partitions for regions accessed in this inner loop,

CHAPTER 3. AUTOMATIC DATA PARTITIONING 45

for i in V:
range = Ranges[i]
for k in range:
Y[i] += Mat[k].val * X[Mat[k].ind]

(a) SpMV code

P, = equal(Y, N)

P, = image(P;, fip, Ranges)
P; = IMAGE(P,, Ranges[|, Mat)
P, = image(P3;, Mat[].ind, X)

(b) Synthesized DPL code

Figure 3.6: SpMV example

such as Mat and X, must be constructed by collecting (and flattening) the image of
this map. The DPL code synthesized for the SpMV code is shown in Figure BGH.
Note that the partitioning strategy in Figure BGH can lead to suboptimal perfor-
mance when the the number of non-zeros in each row is uneven, because the partition
of the matrix is derived from an equal partition of Ranges. In this case the user
can construct a balanced partition of Ranges using, for example, a graph partitioning
heuristic, such as the one proposed by Ravishankar et al. [61], and provide it as an

external constraint.

3.3 Optimizations

As described in Section BZl, uncentered reductions on distributed memory systems are
implemented using temporary buffers, because different tasks can make changes to
the same element, and these changes must be reconciled to ensure the result is correct.
In our programming model, tasks must specify which partitions need these buffers
using reduction permissions, as described in Section 2Z4. However, using a reduction
buffer of the size of the whole partition is often inefficient because the buffering is

required only on the part that is accessed by multiple parallel tasks. Furthermore, if

CHAPTER 3. AUTOMATIC DATA PARTITIONING 46

the partition for uncentered reductions is disjoint, which means each location in the
region is updated only by one task, no reduction buffer is necessary. In the rest of this

section, we describe two optimizations in the solver to minimize the size of reduction

buffers.

3.3.1 Relaxing Disjointness Requirements

One strategy to synthesize a disjoint partition for uncentered reductions (thereby
eliminating the reduction buffer) is to use an equal partition for these reductions
and derive a preimage partition for the iteration space as in Example B: The solver
requires P (the partition symbol for the uncentered reduction in Figure B3) to be
a disjoint partition by introducing an extra predicate DISJ(P,), and the resolution
algorithm produces a solution where P; is assigned to equal(S) and P, to a preimage
partition derived from P,. With this solution, the loop in Figure B23 need not request
a reduction buffer to parallelize its uncentered reductions.

This strategy does not work when a loop has multiple uncentered reductions
using different functions. If the solver uses an equal partition for these uncentered
reductions, then the partition of the iteration space, which must be disjoint because of
the uncentered reductions, must contain all preimages of those different functions and
the solver cannot prove it to be disjoint using the resolution lemmas. The following

example illustrates this issue with multiple uncentered reductions.

Example 7. Figure B71 shows the partitioning constraint for a loop with two uncen-
tered reductions. Using an equal partition for both Py and Ps would lead the solver to
an assignment of Py to a union of preimages preimage(R, f,..) and preimage(R, g, ..),
which cannot satisfy the predicate DISJ(P;).

Program Constraints

for i in R: PART(P;,R) A COMP(P;,R) ADISJ(P,)
S[f(i)] += R[i] A PART(P,S) A image(P;,£,8) C P,
S[g(i)] += R[i] A PART(P,S) A image(Py,g,S) C P

Figure 3.7: Example loop with multiple uncentered reductions

CHAPTER 3. AUTOMATIC DATA PARTITIONING 47

Program Constraints

for i in R: PART(P;,R) A COMP(P,,R)
if £(i) in S: S[f(i)] += R[i] A PART(F,,S) A image(P,,f,8) C P
if g(i) in S: S[g(i)] += R[i] A PART(P%,S) A image(P,g,8) C P

(a) Relaxed loop

parallel for p in Pi:
R = P [p]
S = Plpl
for i in R:
if £(i) in S: S[f(i)] += R[i]
if g(i) in S: S[g(i)] += R[i] (P = P3)

(b) Parallelized loop

Figure 3.8: Relaxing disjointness constraint from uncentered reductions

The obvious alternative of assigning a disjoint partition to only one of the un-
centered reductions would still require a reduction buffer for the other uncentered
reduction. However, the disjointness requirement can be lifted completely by rewrit-
ing the loop into a relazed form, shown in Figure B=a. This loop has a guard for each
uncentered reduction. In a serial execution these guards are trivial (always true), but
when regions used in these guards are replaced by partitions (shown in Figure B=8H),
the guards prevent contributions in the original loop from being applied multiple
times. Therefore, the solver no longer needs a DISJ predicate on the iteration space
partition and can use the union of preimages, which was not viable before the re-
laxation. Figure B9 shows how guard conditions work; even though some iteration
space elements appear in more than one subregion of the iteration space partition,
each iteration contributes to each reduction only once. (Note that the partitions P,
and P; in the constraints were unified in the parallelized code.)

This relaxation is not always beneficial, because it introduces redundant computa-
tion and extra communication due to overlap among subregions of the iteration space
partition, and is not always applicable. We heuristically relax loops only when all

loops using the same region as the iteration space can be relaxed.

CHAPTER 3. AUTOMATIC DATA PARTITIONING 48

R S
R S
T 1 X > X
1 z n
T+ 2 Y < L 'Y
A J s
Y+ z
3 c 2 Y oyt
z
3 z > Z

(a) Original loop
(b) Parallelized loop

Figure 3.9: Example execution of loops in Figure B8

3.3.2 Finding Private Sub-Partitions

In cases when the relaxation is not applied, the optimizer tries to subtract a private
sub-partition from the reduction partition. A private sub-partition of a partition P is
a disjoint partition P, that satisfies P, € P. Since the private sub-partition is disjoint,
the program need not request a reduction buffer. However, the parallel loop must be
modified to account for the fact that now the reduction partition is divided into two
parts; if the original reduction partition P is divided into a private sub-partition P,

and the rest P; = P — P,, then the original parallel loop:

parallel for j in P’:
for i in P'[j]:
P[j1lg(i)] += P'[j1[i]
must be rewritten to:
parallel for j in P’:
for i in P'[j]:
if g(i) in P,[j1: P,[j1[g(1)] += P'[j][i]
else: P,[j1lg(i)] += P'[j][i]
Although there is no general construction of private sub-partitions for a partition,

we can use the following theorem when the partition is derived by the image operator

from another disjoint partition.

Theorem 1. Let fz(P) and f5'(P) be defined as follows:

CHAPTER 3. AUTOMATIC DATA PARTITIONING 49

fe Us(P)I0]
[Pop | (/s(P) = fs(fx" (Js(P)) = P)[0]
[P s fs(P_|
| PO — fs(P)o] |
Pk o fs(P)[0
v >

R S

Figure 3.10: Private sub-partition theorem

fr(P) £ image(P, f, R) f};l(P) £ preimage(R, f, P)

For a disjoint partition P of a region R, the following expression constructs a private

sub-partition of fs(P) for any f and S:
fs(P) — fs(fg'(fs(P)) — P).

Proof. (Sketch) Each image subregion fg(P)[i] contains all elements pointed to by
those in P[i]. Then, the sub-expression f;'(fs(P)) extends each subregion P[i] with
the elements from the other subregions P[j] (j # i) that also point to the subre-
gion fg(P)[i]. Subtracting P from this expanded partition leaves each subregion
with only the elements originally from other subregions. Therefore, its image (i.e.
fs(fr'(fs(P)) — P)) represents the shared part in the original image partition fg(P),

and thus its complement is a private sub-partition. O

Figure B11 illustrates the private sub-partition construction in Theorem .

Once the solver identifies a private sub-partition from a partition, a reduction
buffer needs to be allocated only for the shared part. This construction can be gener-
alized to cases when the reduction partition consists of multiple image partitions, for
which the solver simply takes an intersection of all private sub-partitions in individual

image partitions.

CHAPTER 3. AUTOMATIC DATA PARTITIONING 50

3.4 Implementation

We have implemented our constraint-based approach in Regent [64]. Regent provides
both first-class support for data partitions and all DPL operators in Figure 222 [71],
which make it a suitable base system for our approach. Regent uses Legion ['7], a dis-
tributed runtime system for implicit task parallelism, which detects and enforces data
dependencies between tasks and also resolves data movement between data partitions.
The constraint inference algorithm and solver are implemented as an optimization
pass in the Regent compiler.

The inference algorithm examines parallelizable loops in tasks. When paralleliz-
able loops are nested, the outermost loop is chosen as the target of parallelization.
The final stage of auto-parallelization is a source-to-source transformation that con-
verts the original loop into a form that launches parallel tasks using synthesized data
partitions. All parallelizable loops are also amenable to CUDA code generation sup-
ported by the Regent compiler.

In the rest of this section we describe additional optimizations specific to the

Regent implementation.

3.4.1 Optimizing Uncentered Reads

In many cases, some of the elements accessed by uncentered read access are also
accessed by centered access in the same loop. For example, a task that computes
a 3-point stencil A[i-1]+A[i]+A[i+1] on a window of 1D space can find the sten-
cil elements in a subregion containing elements for the centered access A[i] except
when the task visits either end of its window (in which case at least one of the sten-
cils requires an element from another window). Keeping such elements in multiple
partitions is redundant and inefficient in terms of communication.

One way to eliminate this redundancy is to make elements accessed by uncentered
reads co-located with those for centered accesses by unifying their partitions. In fact
this is the constraint solver’s default strategy; for example, for the program in Fig-
ure B, the constraint solver would synthesize a union partition Ps of two partitions

Pgjs) and Pge(3)) for the region S, where Pg5) and Pgpe(;)) contain the elements for the

CHAPTER 3. AUTOMATIC DATA PARTITIONING o1

for i in R:
v = S[i]
w = S[f(i)]

R[i] = v + w

Figure 3.11: Example loop with an uncentered read

parallel for p in Fy:

R = Rlp]

Spriv = Ppriv [p]

Sghst = Pghst [P]

for i in R:
v = Spriv [1]
if f(l) in Sghst: w = Sghst [f(l)]
else: w = S, [f(i)]
R[i] = v + w

Figure 3.12: Modified loop using ghost region for the uncentered read

centered access at line 2 and the uncentered access at line 3, respectively. However,
such union partitions have sparse subregions in general, for which Regent’s runtime
system currently constructs dense instances for the whole bounding volume; for exam-
ple, even when a subregion has elements for only two indices 1 and 100, the runtime
system allocates an instance containing elements for the whole interval [1,100]. This
bloating can limit the scalability of parallelized programs. Our implementation cre-
ates union partitions only for the uncentered accesses via affine functions, which incur
only a limited amount of bloating. Alternatively, we could change the runtime system
to allocate compressed instances for sparse regions, which however would make time
complexity of the access no longer asymptotically constant.

Another strategy is to isolate “ghost” elements, i.e., elements exclusive to uncen-
tered accesses, in a partition. For the example program in Figure BTT1 we use the

following sub-partitions P, and Py, for the uncentered access:
Ppriv = PS[i} and Pghst = PS[f(i)] - Ppriv-

The original program must be also modified as in Figure BI2 to account for the

CHAPTER 3. AUTOMATIC DATA PARTITIONING 52

parallel for p in F:

R = Flp]

Spriv = Ppm’v [p]

Sghst = Pghst [p]

for i in R:
v = Spriv [1]
if FPelpl[il: w = Sy [£(i)]
else: w = S, [£(1)]
R[i] = v + w

Figure 3.13: Example of a cache replacing the guard in Figure B12

fact that the original uncentered access is now served by two subregions (lines 7-8).
Note that the sub-partition P, contains only the ghost elements (and its subregions
are often called ghost regions). Only the elements in Py, require data movement,

assuming that the for loop runs on a node where each subregion of P, is allocated.

3.4.2 Caching Inclusion Checks

Guards introduced by the optimizations in Sections and B2 can be expensive
to check when the subregions are sparse. To amortize the cost of those checks our
implementation replaces them with a cache that stores values of guard conditions.
The cache is implemented with a region of boolean values and can be initialized using
a preimage partition under the function used in the uncentered access. For example,
the guard at line 7 in Figure B12 is replaced with the cache F;[p] in Figure BT3; the
cache F; is constructed by the code in Figure BT, where £i11(R, c) is a Regent
operator that assigns the constant value ¢ to every element in the region R.
Alternatively, we could split the loop to statically disambiguate accesses to multi-
ple regions, as Koelbel and Mehrotra [d9] and Adve and Mellor-Crummey [7] distin-
guished accesses to local data from those to non-local data. We decided not to use
this transformation because of the potential combinatorial explosion of cases in the

output program.

CHAPTER 3. AUTOMATIC DATA PARTITIONING 53

C = region(bool, N) -- N is the size of R
-— Initialize the cache to false
£fill(C, false)

—-- Construct a partition that contains only the elements for
-- which the guard evaluates to true, i.e., a partition PFirue
-- such that Vp € Pirue. Vi. £(i) € Ppst[p] = @ € Pyrue[D]

Pirye = preimage(C, f, Py)

-- Set the cache to true for the elements in P,y
for p in Pirue:

£i11l (Pirue [p]l, true)

P = image(Fx, fip, C) -- FP; is isomorphic to F

Figure 3.14: Initialization code for the cache % in Figure B3

3.5 Evaluation

We evaluate our implementation using the SpMV code in Figure B0 as well as four
larger Regent programs: Stencil [[72], MiniAero [d1], Circuit [65], and PENNANT [B8].
All programs have a “main” loop where they spend most of the execution time, and
this main loop consists only of parallelizable loops. We measure weak scaling per-
formance of the benchmark programs; in weak scaling, the problem size per node is
held fixed while the number of nodes in parallel machine is increased. For the last
four Regent programs (Stencil, MiniAero, Circuit, and PENNANT) we also compare
them with hand-optimized counterparts that are already optimized for weak scaling
performance in the previous work [65]; those hand-optimized counterparts achieved
near-perfect weak scaling because they programs need only a constant amount of
per-node communication for a fixed problem size per node. Therefore, any acute
degradation of weak scaling performance is in large part attributable to an inefficient
data partitioning strategy.

All experiments were performed on Piz Daint [4], a Cray X50 system; each com-
pute node is equipped with one Intel Xeon E5-2690 CPU with 12 physical cores, one
NVIDIA Tesla P100, and 64GB of system memory.

CHAPTER 3. AUTOMATIC DATA PARTITIONING o4

Table B presents a breakdown of compilation time for benchmark programs. The
table also shows the size of each program in terms of the number of auto-parallelized
loops and total compilation times of hand-optimized counterparts as a baseline. The
constraint inference and solver algorithms and the rewriting to parallel code constitute
less than 10 percent of the total compilation time, and the binary code generation
is a dominant component. Note that the baseline does not strictly match the time
for generating a binary from the auto-parallelized code, because the auto-parallelizer
produces a program that is different from the hand-optimized counterpart.

The weak scaling performance of benchmark programs was were measured once
the programs reached a steady state. All computation tasks running within the

measurement window used only GPUs.

3.5.1 SpMYV Microbenchmark

Figure BT shows weak scaling performance of the SpMV code in Figure B@. In the
experiments, we use a diagonal matrix where each row has a fixed number of non-
zeros. With this balanced synthetic matrix the auto-parallelized SpMV code achieved
99% parallel efficiency on 256 nodes.

3.5.2 Stencil

Stencil is a 9-point stencil program for a 2D grid. The stencil consists of a center

and eight neighbor points, two for each direction in 2D space. The uncentered access

SpMV Stencil Circuit MiniAero PENNANT

Constraint inference 1.7ms 5.0ms 28.4ms 58.5ms 110.7ms

Constraint solver 1.7ms 4.0ms 4.3ms 5.8ms 13.1ms
Code rewrite 49ms 0.3s 0.3s 1.6s 1.9s
Binary generation 2.3s 6.5s 7.2s 22.8s 31.4s
Total 2.4s 6.8s 7.5s 24.4s 33.4s

Number of parallel loops 1 2 3 26 37

Baseline N/A 8.7s 8.3s 22.7s 27.6s

Table 3.1: Compilation time breakdown

CHAPTER 3. AUTOMATIC DATA PARTITIONING 95

Problem size: 0.4 x 10° non-zeros/node

10 T

(D]
'-O/—\
22 8 e amwwwna]
;_‘CD
o ©
&5 6l |
g$

=
o)
= 4+ 8
oo
OO

— | |
Ev 2
= 0+AUTO | |

|
1 4 16 64 256
Total nodes

Figure 3.15: Weak scaling performance of SpMV

Problem size: 0.9 x 10° points/node

@ ‘

a2

=

2

2, W

> 10 :

=

oD}

<3

@)

=

)

& 5l |

k=

a,

<

2 - MANUAL

o

E -2 AvuTO

H 0 | | |
1 4 16 64 256

Total nodes

Figure 3.16: Weak scaling performance of Stencil

for each neighbor point corresponds to a distinct subset constraint, for which the
constraint solver synthesizes an image partition of an affine function.
Figure B8 shows performance of the hand-optimized code and the auto-parallelized

code. The auto-parallelized version achieves 93% parallel efficiency on 256 nodes,

CHAPTER 3. AUTOMATIC DATA PARTITIONING 56

Problem size: 2.1 x 106 cells/node

) |

= 10 :
£ R B . = e == == ==

(5]

Ne)

g s |
S

o | -]
= 6

—

2.

+ 4 | |
=

[oh

<

o0 2 N
2 - MANUAL

= - Auto

~ 0 | |

|
1 4 16 64 256
Total nodes

Figure 3.17: Weak scaling performance of MiniAero

whereas the parallel efficiency of the hand-optimized version is 98%. In terms of ab-
solute performance, the auto-parallelized version is slower than the hand-optimized
version by 3% on average. The discrepancy is due to an optimization for communi-
cation manually applied to the hand-optimized version: The code maintains a copy
of the halo part in its own region, which consolidates inter-node data movement for
halo exchanges in each direction into a single transfer, while the eight partitions used
by the auto-parallelized version require two data transfers per direction. A similar
consolidation optimization would be possible in our approach given that uncentered

accesses use affine functions, but not pursued.

3.5.3 MiniAero

MiniAero is a proxy application that solves the Navier-Stokes equation for compress-
ible flows. MiniAero uses a 3D hexahedron mesh with faces shared between neigh-
boring hexahedron cells. The simulation calculates flux between cells pointed to by
each face. All tasks in the simulation loop read face properties and update cell prop-

erties via uncentered reductions using pointers in each face, similar to Figure BZ2; the

CHAPTER 3. AUTOMATIC DATA PARTITIONING o7

Problem size: 10° wires/node

= 6 ‘

~~

n

k=

=

S

Z 4} i

q') Sl

= ®

o \

) \

g \

2,

e 20 8

2 |

< -~ MANUAL ®

o0 N

2 - AUTO+HINT .

= -@- Auto ®

H O | | |
1 4 16 64 256

Total nodes

Figure 3.18: Weak scaling performance of Circuit

optimizer applies the optimization in Section BZ3 to these reductions to eliminate
reduction buffers completely.

Figure B0 shows performance of hand-optimized and auto-parallelized versions of
MiniAero. Both achieve 98% parallel efficiency on 256 nodes, but the auto-parallelized
version is 2% slower on average. This difference is explained by different mesh gen-
erators used in the two versions: The mesh generator in the hand-optimized code
duplicates faces when they point to cells from two different subregions so that faces
surrounding cells in each subregion can be contiguously indexed. On the other hand,
because the auto-parallelized code uses a mesh generated for sequential execution,
faces in each face subregion can be non-contiguously indexed, leading to a small

performance degradation in CUDA kernels generated by the Regent compiler.

3.5.4 Circuit

Circuit simulates electric currents along wires in an unstructured circuit graph. Each
wire has pointers to incoming and outgoing nodes, which are used for uncentered read

accesses and reductions to the region of nodes. Circuit graphs are randomly generated

CHAPTER 3. AUTOMATIC DATA PARTITIONING 58

in a way that circuit nodes form clusters; a maximum of 20% of wires connect nodes
in two different clusters.

To showcase the ability to exploit external constraints, we use the existing parallel
circuit graph generator that produces inputs to Circuit and auto-parallelize computa-
tion tasks with and without a user constraint describing the initial partition of nodes
produced by the generator. Figure BI8 compares these configurations (AUTO+HINT
and AuTO) with the hand-optimized code (MANUAL). Without the user constraint,
the auto-parallelized code uses an equal partition of circuit nodes, which makes the
code match the hand-optimized one within 5% only up to eight nodes. The circuit
generator is designed to simulate sparsely connected components, and thus assigns
the first 1% of entries in the region of circuit nodes to those connected to nodes in
other clusters. As a result, the equal partition of the region of nodes puts all these
“shared” nodes in one subregion, making the task using this subregion a communica-
tion bottleneck.

To fix this performance issue, we give the solver an interface constraint describing
the externally computed circuit partition. The parallel circuit generator uses two par-
titions of the region rn of circuit nodes, pn_private for private nodes and pn_shared
for shared nodes, and the union of these partitions is a disjoint, complete partition of

rn, as expressed by the following user constraint:
DISJ(pn_private U pn_shared) A COMP(pn_private Upn_shared, rn)

With this user constraint, the performance of the auto-parallelized code stays within
5% of the hand-optimized code on 256 nodes and shows better performance up to 64
nodes. The latter is due to the fact that the hand-optimized code always requests
reduction buffers for the entire subset reserved for shared circuit nodes even when only
a few nodes in this subset are shared, whereas the auto-parallelized code computes
tight private sub-partitions to reduce the size of reduction buffers for uncentered

reductions.

CHAPTER 3. AUTOMATIC DATA PARTITIONING 59

Problem size: 1.8 x 10° zones/cell

=z
g
S 150 | |
N
=
Z
< 100 :
o
a
g
S,
S 50| MANUAL ‘e |
,?O -m AUTO+HINT2 L .
2 -® - AuTo+HINT1 e °
= -4- AuTo
B O | | |
1 4 16 64 256

Total nodes

Figure 3.19: Weak scaling performance of PENNANT

3.5.5 PENNANT

PENNANT is a proxy application for Lagrangian hydrodynamics on 2D meshes. Each
polygonal zone in the mesh consists of triangular sides; each pair of sides share two
points. Each side has five pointers used in uncentered accesses: two pointers to the
previous and next neighbor sides in the same zone, one to the zone, and the last two
to points at the vertices of the zone.

Similar to the random circuit generator in Circuit, PENNANT’s mesh generator
separates points shared by sides in different subregions from those owned by a single
subregion of sides. Shared points reside in the initial entries in the region of points.
Because of this separation, performance of the auto-parallelized code without any user
constraint (AUTO in Figure BT9) keeps up with the hand-optimized one (MANUAL)
only up to four nodes and then drops due to the communication bottleneck.

After adding an external constraint describing the partitioning of points, the
auto-parallelized code matches the hand-optimized one within 6% up to 32 nodes
(AuTOo+HINT1). The auto-parallelized code still struggles to scale beyond 64 nodes,
but for a different reason: the partitions constructed by the synthesized DPL code

CHAPTER 3. AUTOMATIC DATA PARTITIONING 60

exhibit sparsity patterns inefficiently handled by the underlying runtime system, even
though they are equivalent to those used in the hand-optimized one in terms of in-
duced inter-node communication. We circumvent this issue by providing additional

constraints to guide the solver to synthesize simpler DPL code as follows:

e We reused the existing disjoint, complete partitions rs_p and rz_p of sides and
zones, respectively. The parallel mesh generator guarantees that zones pointed
to by the sides in the ith subregion of rs_p are all contained in the ith subregion

of rz_p (i.e.,image(rs_p, rs[|.mapsz,rz) C rz_p).

e Additionally, each side s has all its neighbor sides accessed via rs[s].mapss3

and rs[s].mapss4 in the same subregion:

image(rs_p, rs[|.mapss3,rs) C rs_p

A image(rs_p,rs[|.mapss4,rs) C rs_p

Although these constraints are recursive, the solver can still check the consis-

tency as long as a satisfying partition (rs_p) is provided.

e Finally, the mesh generator creates a partition rp_p_private of private points,
which can be used as a private sub-partition for uncentered reductions using

rs|-|.mapsp1:
preimage(rs,rs|-].mapspl, rp_p_private) C rs_p

With these additional user constraints there is no noticeable difference between the
auto-parallelized and hand-optimized versions (AuTO+HINT2). This example shows
the constraint interfaces’ ability to provide extra information to gracefully deal with
cases where the auto-parallelizers’ heuristics do not quite match reality. Writing the
additional constraints is still much easier than parallelizing the code by hand, and
preserves the option of parallelizing the code in a different way in a different context

or after further improvements in the underlying runtime system.

CHAPTER 3. AUTOMATIC DATA PARTITIONING 61

3.6 Case Study: Soleil-X

In this section, we discuss our experience in applying the constraint-based approach
to Soleil-X [68]. Soleil-X is a multi-physics solver for a particle-laden turbulent flow
problem developed for the Predictive Science Academic Alliance Program (PSAAP)
IT program [2] at Stanford. The solver aims at high-fidelity simulations of a concen-
trated solar energy receiver (whose governing equations are beyond the scope of this
dissertation and can be found in other papers [45,57]), which involves simulations of
three physical phenomena: Eulerian fluid flows, Lagrangian particle dynamics, and
thermal radiation. Another goal of the solver is the productive development of simu-
lation components using alternative programming technologies to the traditional MPI
software stack.

Soleil-X was initially written in Liszt [20], a domain-specific language (DSL) for
mesh-based PDE solvers. A Liszt program consists of a set of kernels, which concisely
describe per-element computations, and a control plane that determines the sequen-
tial control flow. The DSL compiler auto-parallelizes the program for distributed
execution by exploiting parallelism implicit in computation kernels. As the hard task
of parallelization is handled by the DSL compiler, domain scientists can focus on
implementing a domain logic. The initial result was promising; the fluid solver fit
completely into Liszt’s programming abstractions and the prototype implementation
scaled well to a small number of nodes.

However, extrapolating this initial result to the whole simulation was quickly im-
peded by the DSL’s limited capability. At the time Liszt provided distributed code
generation only for for-all style parallel computations over mesh elements using affine
stencils and anything beyond this pattern required a serious extension to the DSL de-
sign and implementation. Unfortunately, the two remaining components, Lagrangian
particles and thermal radiation with the discrete ordinate method (DOM) [64], turned
out to be difficult to implement given this limited expressivity of Liszt.

We eventually decided to change the implementation language to Regent. Regent
is a superset of Liszt in terms of language expressivity and has constructs that are

directly mappable from the Liszt counterparts, making it easy to build a translator

CHAPTER 3. AUTOMATIC DATA PARTITIONING 62

Figure 3.20: Task graph of Soleil-X for a single time step on a single processor. Fluid,
particle, radiation tasks are blue, green, and red colored, respectively.

from Liszt to Regent. Furthermore, unlike Liszt, which is domain specific, Regent is a
general purpose language that was not only able to express the remaining components
but also capable of handling other future, unanticipated extensions to the application.

Our constraint-based approach was conceived in the midst of this transition. From
lessons we learned from our experience with Liszt, we aimed at designing an auto-
parallelizer that enables the composition of program components parallelized by dif-
ferent means; we wanted the auto-parallelizer to handle all the existing kernels in
the Soleil-X code base, which are known to be parallelizable, and yet allow us to
manually write components that are not amenable to auto-parallelization and to in-
tegrate them seamlessly with the rest of the program. The constraint-based nature
of our auto-parallelizer was key to achieving this goal; the coupled fluid and particle
simulation was entirely auto-parallelized by the compiler except for the particle trans-
fer, for which we were able to swap the compiler generated implementation with a
more efficient, hand-written one (similar to the example in Figure [7) satisfying the
partitioning constraints; the DOM solver for radiation was also manually parallelized
and seamlessly mixed with the rest of the program by making it reuse data partitions
used in the auto-parallelized components.

Figure shows the task graph of Soleil-X for a single time step on a single

CHAPTER 3. AUTOMATIC DATA PARTITIONING 63

Problem size: 67 x 10° cells and 32 x 10° particles/node

T T T T T

o 10} H‘\\w\‘\. |
e

=

= ® O)
A

=

& 3

Ov 47 —
bt

=

=, |

O | | | |

|
1 4 16 64 256
Total nodes

Figure 3.21: Weak scaling performance of Soleil-X

processor. Blue, green, and red colors represent that the task is part of the fluid, par-
ticle, and radiation simulation, respectively. Four horizontal clusters of nodes in the
graph correspond to the fact that Soleil-X uses a fourth-order Runge-Kutta march-
ing scheme. Another interesting observation is that the graph has edges that connect
nodes with different colors, which represent data dependencies between tasks in differ-
ent simulation components. This fine-grained composition of simulation components
at the granularity of individual tasks is enabled by the auto-parallelizer facilitating
such composition via partitioning constraints.

We measured weak scaling performance of Soleil-X on Sierra supercomputer [6];
each compute node has 4 NVIDIA Tesla V100 GPUs and an IBM Power9 CPU with
44 cores. We ran computation tasks only on GPUs and used the Power9 processor
for running the runtime system. Figure B2 plots the weak scaling performance
of Soleil-X on up to 256 nodes. The plot shows bi-modal performance, which is
due to an increase in data movement; the fluid solver in Soleil-X leaves some of the
dimensions unpartitioned, for which no communication is necessary, on up to 4 nodes,

and every node starts to communicate with the maximum number of neighbors only

CHAPTER 3. AUTOMATIC DATA PARTITIONING 64

starting with 8 nodes. The performance is stable (within 1%) from 8 nodes onward,
demonstrating that the auto-parallelized code maintains communication efficiency

once it reaches the maximum number of per-node neighbors.

Chapter 4
Dynamic Tracing

In our implicitly parallel tasking model, the runtime system is responsible for dis-
covering parallelism implicit in programs. To serve this need, the runtime system
constructs a task graph that captures all dependencies between task instances. The
constructed task graph then encodes available parallelism in a set of mutually un-
reachable nodes, representing a set of tasks that can potentially run in parallel.

However, the runtime system’s dependence analysis is an expensive way to build
task graphs as it is a generic “interpreter” of task instances agnostic to the program
structure; this interpreter takes each task instance one at a time, analyzes the task
instance’s dependencies on previous task instances, and records those dependencies
to the task graph. If instead our goal is to build a specific graph for a set of task
instances, we can specialize the interpreter’s analysis to a process that constructs
just that one graph. This explicit graph construction is much more efficient than
the dynamic dependence analysis as it has no interpretive overhead. Furthermore,
because programs often have a trace of task instances launched repeatedly, specializing
the dependence analysis for such traces can greatly reduce runtime overhead, thereby
improving the strong scalability of parallel execution.

Drawing from this interpreter analogy, dynamic tracing specializes the dependence
analysis of a trace of repetitive task instances (hence the name “tracing”) to a graph

calculus program (Section B); graph calculus is a simple imperative language with

65

CHAPTER 4. DYNAMIC TRACING 66

commands that directly construct task graphs. The graph calculus program is associ-
ated with a precondition that must be satisfied for the program to correctly replace the
original dependence analysis of the trace, and a postcondition that must be applied
to make the dependence analysis state consistent with the task graph constructed
by the program. Whenever a previously specialized trace appears during program
execution, the specialized program is executed to replace the dependence analysis as
long as the precondition is satisfied (Section B=2).

Our empirical evaluation with the five benchmark programs and S3D-Legion [[70],
an exascale software for turbulent combustion simulation, demonstrates that our im-

plementation of dynamic tracing in the Legion runtime [I7] significantly improves

strong scaling performance (Section B4).

4.1 Recording Dependence Analysis

Dynamic tracing starts with the recorder recording the dependence analysis of a trace.
A recording for a trace is initiated in two cases: when a trace has appeared for the
first time, or when no recording of a trace passes the precondition check described in
Section B2

We assume that traces are already delimited in a program. A trace is a sequence
of task instances that are issued between a begin_trace and a matching end_trace
statement. At least some of the places that tracing can be beneficial are obvious,
such as around important loops. The following example from Figure '8 delimits all

traces in the program:

while *:
begin_trace
for i = 0, 2: F(A[i])
for i = 0, 2: G(A[h(i)])

end_trace

The recorder uses graph calculus, whose syntax is shown in Figure B, to express

task graphs. Graph calculus uses events that signal the termination of operations.

CHAPTER 4. DYNAMIC TRACING 67

T € Taskld I € RegionInstance e € FEvent o € ReductionOp = {+,*,...}
op € Operation ¢ € Command

¢ == e:=op(op,e)|e:=merge(e)|e:=fence|c;c
op = T)|I+I|I«+ ol

Figure 4.1: Syntax of graph calculus

An op command has the form ey := op(op,e;). The operation op begins execution
after the event e; triggers, and the event ey triggers when op terminates. Possible
operations include tasks (of the form T(I)), copies (of the form I < I), and reduc-
tion applications (of the form [<— I o [). To express multiple predecessors for an
operation, the merge command merges a set of events into an event that is triggered
when the events being merged are all triggered. A fence command creates a fence,
an operation that finishes only after all preceding operations terminate. Fences allow
graph calculus commands to work correctly with earlier untraced parts of the execu-
tion, as the previous dependent operations potentially include operations not in the
trace. Finally, the calculus has command sequencing.

The recorder generates graph calculus commands from a dependence analysis of
a trace as follows. Each trace operation op has a corresponding command ey :=
op(op, e1). The termination event ey is unique (is not used on the left-hand side of
any other op command). The event e; is the merge (using a merge command) of
the termination events of o’s dependence predecessors in the trace. For example, in
Figure B2, task instance T.(A%, B%) has two predecessors T,(A%, B%) and A% < A®+AP,
whose events e, and eg are merged into e;. If there is no predecessor (e.g., because
this is the first operation of the trace), a fence is introduced to safely capture any
dependencies on those operations that are not recorded. Task instance T,(A%, B%) in
Figure B2 uses fence e; as it has no predecessor in the trace.

When the recorder reaches the end of the trace, the recorder inserts an op state-
ment for a summary operation, a task instance that writes to all region instances used
in the trace. The key difference between a fence and a summary operation is that a
fence waits on all the preceding operations, both within and out of the current trace,

whereas the summary operation has dependencies only on operations within the trace.

CHAPTER 4. DYNAMIC TRACING 68

Any subsequent operation that has dependencies on any of the replayed operations
can safely catch the dependencies transitively through the summary operation.

The recorder also computes the precondition and postcondition of recorded com-
mands, which are used in the replaying stage; the precondition is a set of region
instances that must be valid for recorded commands to replay the same subgraph as
the original dependence analysis; the postcondition is a set of region instances that
become valid after recorded commands replay a subgraph. The precondition and
postcondition are computed by processing trace operations in order, beginning with

empty pre and postconditions, and applying the following rules:
pty p p) pplying g

e If rule R; was applied to the region instance and the region instance is not in
the postcondition, that region instance is added to the pre and postcondition.
For example, in Figure B2, the region instance A% is added to the pre and

postcondition when the task instance T,(A%, B*) is recorded.

o If rule Ry was applied to the region instance and the source instance of the
copy is not in the postcondition, that source instance is added to the pre and
postcondition. The target instance of the copy is added to the postcondition.
For example, the target instance B? of the copy B <— B* in Figure B2 is added

to the postcondition.

e If rule Red; was applied to the region instance, the postcondition of that re-
gion is cleared for the set of indices where the reduction was applied, and that
instance is added to the postcondition. Each applied outstanding reduction is

then handled by the following rules:

— If the reduction instance is not in the postcondition, that reduction in-

stance is added to the precondition.

— Otherwise, the reduction instance is removed from the postcondition as it

is no longer outstanding.

For example, when the reduction application A% <— A%+A? in Figure B2 is recorded,
the reduction instance A? is removed from the postcondition and the target in-

stance A“ becomes a sole instance in the postcondition for the region A.

69

CHAPTER 4. DYNAMIC TRACING

(T3 9INS1 Ul SIsA[eue oouopuodop o) JO SUIPIOY 7§ 0INSIq

MAQO AASm "Qm n@< “Q<v%.~m§=dwh.vnmo —: 01g

:uoryerodo ArewIuins ® 1I9su]

(e0w1y o) JO puy)

‘(82 ‘99 ‘75 ‘o ‘Za)a310W =: 68
ol ‘gl ‘¥ gV 1S90UR)SUT UOISOY
of < g B < ¥ SUONIPU0DISO] (a0
‘(20 (g pY)°L)do =: 8 of < ¥ :SUOI}TPUO0IDIL] > g m
‘(% ‘¢o)o810m =: Lo 89 < (g ‘HV)°L “
(G ¢ .9 ﬁ@<+d< - GAQ ﬁdm - Qm@ ABm d<vu_H.
(%9 y¥+o¥ — o¥)do =: % 99 < JV+o¥ = o¥ L
‘(ve ‘t 3 =: 9 ¢
(v& *to)oBaom =: %8 78 < (yd V)L (g o¥)°L
€0 i o9 — 44 e e
%o ¢ (oF ‘H¥) "L STTOAT
o gl oV gV 1S00URISUT UOISOY
{od g} < g o
¥ ¥ gd gV) L
emil ot Na L ‘L :SUOI}IPU093SO
(P (48 y¥)L)do =: 7o oV Y A d (av
‘(%o pd — mmvao =: %o oV < ¥ SUOIIPUOIDIJ g ¢
Yo <« mh n,_H_ . N
(g8 V) (o8 “o¥)°L
€ < dm — Qm
%o < (od ‘H¥)°L SIUOAT
of ‘o¥ :SeourSUT OISO
((Po (vl ‘p¥)®1)do =: Co [<= ¥ < ¥ SUONIPUONISO] . ‘
‘oouay =: te o < ¥ 1SUOI}IPUOIDI] (o8 0¥)°L) (o80¥)"L

%8 < (oF ‘o¥)°L :SIUOAT

SPURWMO,) PIPI0IY

9)e)G I9PI0dY

ydern) yseq,

9oUR)SUT NS,

(s)speex‘(y)+sedonpax (g ‘Y)?4L ¥sea

(s)seatam'(g)speax’(y)speax (S ‘4)°L ¥sea

(s)seatam'(y)seatan’(y)speax (S ‘Y)°L {SeI :SYSE],

CHAPTER 4. DYNAMIC TRACING 70

Original Dataflow Analysis Transitive Reduction
e, := fence; e, := fence;
ey := op(Ta, 1); ey — e ey := op(Ta, e1);
es := op(B” < BY, e,); es > ey, ey es := op(B” < BY, e,);
eq := op(Ty, €3); €4 > €1,€9,€3 eq := op(Ty, e3);
es 1= merge(ey, ey); €5 > 1,89, €3, €4 es 1= merge(ey);
eg := op(A® « A“+AP, es); € > €1,€9,€3,84,85 € := Op(AY A“+AP, es);
€7 > €1,€5,€3,€4,€5
ey := merge(ey, ¢); . ey := merge(eg);
6
L T Aa Ba . eg = €1,€2,€3,€4,€5 L T Aa Ba .
€g = OP(C())7e7)7 €g = OP(C())7e7)7
€s, er
L) > €1, €2, €3,€4,€5 L .
eg := merge(e,, €3, €4, €6, €3); eg := merge(es);
€6, €7, €3

€10 7 €1,€2,€3,€4,€5

€10 = Op(Tsummary7 eQ);
€6, €7, €5, €9

€10 = Op(Tsummary7 eQ);

Figure 4.3: Transitive reduction on the commands in Figure =2 (region instances in
task instances are elided.)

e If rule W was applied to the region instance, the postcondition of that region
is cleared and that region instance is added to the postcondition. For example,
the task instance T.(A%, B) in Figure E=2 removes the region instance B” from

the postcondition.

e [f rule Red; was applied to the region instance, the reduction instance is added
to the postcondition (until it is applied partially or completely by a subsequent
task instance that reads from that region). For example, in Figure B2, the
reduction instance A? is added to the postcondition when the task instance

Tp (AP, BP) is recorded.

After a trace is recorded, and before it can be used, we apply two standard compiler
passes to optimize the trace: transitive reduction and copy propagation.

Transitive reduction optimizes graph calculus commands by removing transitive
dependencies. We run a dataflow analysis that discovers all transitive predecessors
for each event and then, among the events being merged by each merge command,

we remove those that are transitive predecessors of any other event. In Figure =3,

CHAPTER 4. DYNAMIC TRACING 71

Before Copy Reduction After Copy Propagation

e; := fence; e, := fence;

ey := op(Ta, 1); ey 1= op(Ta, 1);

es := op(B” < BY, e,); es := op(B” <+ BY, e,);
€y = Op(Tb, 63); €4 = Op(Tb, 63);

es 1= merge(ey);

es := op(A® <+ A“+A% e5); eg := op(A¥ < A%+AP e,);
ey := merge(es);

eg := op(T.(A*,B%), e7); eg := op(T.(A*,B?), e6);
ey := merge(eg);

€10 \ = Op(Tsummary7 eQ); €10 = Op<Tsu.mmary; e8);

Figure 4.4: Copy Propagation on the commands in Figure B=3 (region instances in
task instances are elided.)

event e, is removed in the first and second merge commands because it is a transitive
predecessor of event e4, and eg. Removing transitive dependencies reduces the cost
of replaying the graph.

Transitive reductions sometimes leave only a single event in a merge command,
which is equivalent to a copy assignment. We run copy propagation to eliminate those
unnecessary copies. For example, in Figure B4, the merge command es := merge(e,)

is removed and all occurrences of event eg are replaced by es.

4.2 Replaying Dependence Analysis

The next component of dynamic tracing is to replay dependence analysis for a trace.
Figure B33 illustrates how the replayer replays dependence analysis for the second
appearance of trace T,(A% B%); T,(A?,B?); T.(A%,B®) using a recording from the first
appearance of the trace. First, the replayer checks that each region instance in the
precondition is currently valid (Step 1). If any region instance in the precondition
is not valid, the replayer cannot reuse recorded commands, because the original de-
pendence analysis of the trace would issue a copy to make that region instance valid,
which is not replayed by the commands. If all recordings fail to pass the precondition

check, the replayer stops the current replay and the recorder starts a new recording

CHAPTER 4. DYNAMIC TRACING 72

session. Otherwise, the replayer proceeds with a recording whose precondition is satis-
fied. In Figure B3, the set of valid instances after task instance T.(A7,B®) is analyzed
subsumes the precondition and therefore the recording can be replayed.

Next, the replayer runs recorded commands to reconstruct a subgraph (Step 2).
Any explicitly parallel runtime system that supports a synchronization primitive such
as an event or stream that can be used to express dependencies between tasks and
data movement operations can implement graph calculus. Many common runtime
APIs support the requirements for graph calculus. For example, both CUDA [il] and
OpenCL [48] can support graph calculus via their use of streams and events respec-
tively to mediate dependencies between kernels and copy operations. Furthermore,
for distributed memory cases, systems like Realm [69] and OCR [B] have event primi-
tives that can be used on any node to handle distributed execution of graph calculus
commands for computation and data movement.

When replaying a trace, graph calculus commands execute sequentially to con-
struct a subgraph equivalent to the one produced by the original dependence analysis.
The semantics of graph calculus commands is straightforward, except for the fence
command. A fence command creates a new fence with dependencies on all operations
that use any region instance used by commands in the trace. However, the fence is
not connected to operations that do not access any region instances used in the trace.
This is to prevent those operations, which are independent of the replayed subgraph,
from being unnecessarily blocked by that fence. In Figure BZ3, all users of region
instances A%, A%, B®, and B, which are the ones used in the recorded commands, are
connected to the new fence fence. Note that the replayed subgraph does not contain
transitive dependencies between T,(A%, B%) and A* < A°+A” and between T,(A%,B%)
and T.(A%, B%), unlike the subgraph for the first trace, due to the optimizations in
Section EI.

Finally, the replayer updates the list of valid instances using the postcondition
(Step 3). The known valid instances after a replay of a subgraph may be incorrect
because the replayed commands are not analyzed again by dependence analysis. The
replayer ensures the system has the correct set of valid instances after replay by tag-

ging region instances in the postcondition as valid and invalidating all other instances.

73

CHAPTER 4. DYNAMIC TRACING

"popI[a1e uoryerado
Arewrwuns oy} Ul S9OURJSUI UOLSY ' OINSI Ul SUIPIOdDI o) SuIsn SIsATeur douopuadop jo Ae[doy :Gf oInsrq

uonpuoojsod Addy :¢ desg
od g — ¥ = uoryipuooard ooy 1 doig
SRk AU SRR - P8 AVR SRR A B AU |

pozATeue St (¥ ‘(¥)°L 1815 oy}
I91Je SOOURISUL PI[RA

ydeisqns Aedoy :z dogg ydeisqns p1oooy :(doig
(g8 g¥)°L (¢8°g¥)L
<« —t V+o¥ = o¥
ﬁ%<+d< — 34@ ﬁdm — Qmw dm — .Qm
v 4

Axeuums

- RER: A 8 AV AR ;

pozAeue st ﬁ - v
(o8 L¥)°L Puoes oty ?m %QLTT« — & (o8 V) °Ll—]o¥ — ¥

I93Je seouwrilsul PI[BA

HTﬁ?mﬁ%i ?mﬁcsd_j_moqﬁw ?m ds Q ?m as L

¢

H0d ¥)°L 008I37PUS (8 ‘H¥) L (g8 ‘y¥) L (od ‘o¥)°L ‘eoeI3 uT8eq
(o9 L¥)°L ‘901 PUL Admndiuhxnm“minhxdmnd<vmh ‘eoexq uT8eq WIRAI}S YSB],

CHAPTER 4. DYNAMIC TRACING 74

In Figure B73, region instance A” is invalidated after the replay.

Before restarting dependence analysis, the replayer reinitializes the dependence
analysis state using the summary operation. This makes the dependence analysis
aware of the net effect of the replayed operations; any subsequent operation can
catch its dependencies on any of the replayed operations transitively through this
summary operation. For example, the dependence between the reduction application
A® « A“+AP in the replayed graph and the subsequent copy R <~ R® is captured by
those between A% <— A%+A® and the summary operation Tsummary, and between Tgummary
and R? «— R™.

Algorithm B shows the complete dynamic tracing algorithm. The algorithm has
two modes: analysis mode (DEP) and tracing mode (TRACE). If it is in analysis

Algorithm 4: Dynamic tracing algorithm
Data: A tracing state ST € {DEP, TRACE}, initially DEP
Data: A current trace TR, initially @

1 Procedure DynamicTracing(call):

if call is a task :

T < Map(call)
if ST is DEP :

‘ AnalyzeDependence (7"
elseif ST is TRACE :

| TR « TR;T

Iseif call is begin_trace :
ST < TRACE
TR + @

Iseif call is end_trace :
RecordOrReplay ()

ST < DEP

14 Procedure RecordOrReplay():

=R e
N H O © ® g O oA W N
©) ©)

=
w

15 if 3 recording R for TR that passes precondition check :
16 Replay(R)

17 ApplyPostcondition(R)

18 else:

19 R <+ Record(TR)

20 register R to the runtime system

CHAPTER 4. DYNAMIC TRACING 75

Extended graph calculus c¢::=---|e:= event | trigger(e,e)

e, .= event;

Original trace: v N\
ey :=op(Ty,e4); — Slice 1: Slice 2:
e3 := op(Ty, e3); e, := op(Ty,e1); ez :=op(Ty,ey);

trigger(e,, ey);
Figure 4.6: Transformation for parallel trace replay

mode, the algorithm maps each task call to a task instance that goes through the
normal dependence analysis. Otherwise, the algorithm builds a trace of task instances
until it hits the end of that trace (line 11), and it either records or replays the trace
(RecordOrReplay), based on the criteria described in this section. The algorithm
changes from analysis mode to tracing mode when it sees the beginning of a trace
(line 9), and from tracing mode to analysis mode once it finishes either a recording

or a replay (line 13).

4.2.1 Parallel Trace Replay

A recorded graph calculus program can be further optimized so that they can be
replayed in parallel. Figure B8 illustrates the key transformation for parallel replay.
This transformation splits a graph calculus program for a trace into slices. Com-
mands appear in slices in the same order as the original program and any events
that are created in one slice and referenced in other slices are connected using the
graph calculus extension shown in the figure. A command e := event creates a new
untriggered event and assigns it to an event variable e. A command trigger(es,e,)
registers an event dependence such that event e, is notified as soon as e, is triggered,
which simply corresponds to adding an edge between the operations represented by
e, and e;. Slices generated from a trace can be replayed in parallel.

Minimizing events that “cross” the slice boundary is important for reducing the
number of intermediate events for parallel replay, for which we exploit the implicit

knowledge encoded in an application’s task mappings: We put tasks mapped to

CHAPTER 4. DYNAMIC TRACING 76

the same processor in the same slice as much as possible because in a well-mapped

program they are more likely to have dependencies on one another.

4.3 Optimizations for Idempotent Recordings

Recognizing idempotent recordings is crucial to providing an optimized implementa-
tion of dynamic tracing. A recording of a trace is idempotent when its postcondition
implies its precondition. For example, the recording in Figure B2 is idempotent as
its postcondition A +— A% B+ B* contains its precondition A — A®. In this section,

we present two optimizations for idempotent recordings.

4.3.1 Eliding Precondition Check and Postcondition Appli-

cation

The most important property of idempotent recordings is that once an idempotent
recording is replayed for a trace, it becomes replayable without having to apply its
postcondition and check its precondition again for another replay that immediately
follows. In other words, a list of valid instances that satisfies the precondition of an
idempotent recording once will still satisfy that precondition no matter how many

times the recording is replayed. This allows two further optimizations:

e Once the precondition of an idempotent recording passes, the algorithm never

checks the precondition for future consecutive replays of the same trace.

e The algorithm can delay applying the postcondition of an idempotent tracing

until it gets a different trace or a task that is not in any trace.

Algorithm B shows a modified algorithm to incorporate these optimizations. There
are several differences in Algorithm B from Algorithm @. First, Algorithm B keeps
the previous trace and recording to check that the same trace is repeatedly replayed
(line 30-31). Next, it replays a recording without any check when it realizes it is

replaying an idempotent recording repeatedly (line 18-19). Finally, it applies the

CHAPTER 4. DYNAMIC TRACING

7

Algorithm 5: Optimized dynamic tracing algorithm

© W g o A W N

W W ON NN NN NN NDNNN R R R R R R R e
HF O © ® N o U Kk W N H O © 0N o w ok~ W N = O

Data
Data
Data
Data

: A tracing state ST € {DEP, TRACE}, initially DEP
: A current trace TR, initially @

: A previous trace TR’, initially @

: A previous recording R, initially &

Procedure DynamicTracing(call):

if

@

@

call is a task :
T < Map (call)
if ST is DEP :
if R’ is idempotent :
ApplyPostcondition(R’)
R + o
AnalyzeDependence(T")
elseif ST is TRACE :
| TR« TR;T

Iseif call is begin_trace :

ST «— TRACE
TR +— &

Iseif call is end_trace :

RecordOrReplay ()
ST < DEP

Procedure RecordOrReplay():

if TR = TR' N R’ is idempotent :
| Replay(R")
else:

if R’ is idempotent :

‘ ApplyPostcondition(R")
if 3 recording R for TR that passes precondition check :
Replay(R)

if R is not idempotent :

‘ ApplyPostcondition(R)
else:

R < Record(TR)
register R to the runtime system
R < R

TR < TR

CHAPTER 4. DYNAMIC TRACING 78

Tasks: task T;(R) reads(R),writes(R) task T,(R) reads(R)
Trace: Ty(R*); T;(S%); Ta(R*); T2(8%);

e; ;= fence;

[Tl(RO‘)}—> T2<Ra)] ey := op(Ty(R%), e4);

),e1)

. es = OpET1ESa§791§

o (+ (aa ={ e :=op(T2(R%), e2);
[Tl(S)]—> To(S)] es 1= op(T2(S*), e3);

(a) Task graph of the trace eg 1= merge(ey, €s);
e7 := op(Ts(R*, S%), e¢);

~—

\

(b) Recorded commands

TR —~[LE)] [fencel—{T: (rR*)} (T (R?)
@)]\[) e)

L o
[Ti(SO‘)J \TQ(SO‘)]—{TS(RO‘,SQ)] [Tl(SO‘)]—> TQ(SO‘)]

(c) Task graph from two replays

Figure 4.7: Example of spurious dependencies in trace replays

pending postcondition in cases when the current trace is different from the previous

one (line 21-22) or when the task does not belong to any trace (line 5-6).

4.3.2 Fence Elision

Another important optimization that idempotent recordings allow is fence elision.
Although the fence and the summary operation safely connect a subgraph replayed
by graph calculus commands to that generated by dependence analysis and vice versa,
they may introduce spurious dependencies between operations because they are a
join point in the task graph. For example, in Figure B=7d, the summary operation
Ts(R*,8%) and the fence fence add spurious dependencies between the first To(R%)
and the second T;(S%), and between the first To(S*) and the second T4(R*). In case of
repeatedly replaying the same trace with an idempotent recording, the replayer can
keep appending the subgraph from each replay without needing to issue a fence and
register the summary operation as these replays do not require precondition checks.

Figure BR illustrates fence elision. First, we “extend” the trace by unrolling the

CHAPTER 4. DYNAMIC TRACING 79

Region Instance Readers Writers
R® €2,€4 €
S¢ €3, €5 €3

(a) Readers and writers of region instances in C

ey = merge(ey, e4);

ey := op(T1(R"), €a1);

' ey ‘= merge(es, es);
%f e3 := op(T1(8%), €aa);
) epy = merge(e), ey);
) e, := op(T2(R*), [eg1);

er 1= op(T,(8%), e3);
e 1= merge(e}, eg); epy = merge(ey, €3);
e} = op(Ta(R",5%), eb); e, = op(Ts(5"), &g2):

e} := merge(e}, e}
e, := op(Ts(R%, 8%), e5);

(c) Replace fence e with readers and writers in C

(b) Unroll trace once

// Only in the first replay:
e, := fence;

€5 1= ey;
e; = op(h(RZ), €4); e}, := op(T1(R%), es):
o i~ op(nls), I e == op(Ty(8), es);
e, == op(T2(R%), €5); ey := op(T2(R%), €3);
el := op(T2(S"), &}); e := op(T2(8%), €3);
/
e/G = merge(eéla I)a = e%
e} := op(Ts(R*,8%), eg); 5 = ©s
(d) After optimization // Only in the last replay:

e; ‘= merge(e}, er);
el, .= op(Ts(R*, 8%), e5);

(e) Final commands for repeated replays

Figure 4.8: Fence elision for the trace in Figure =7

recorded commands in Figure E7H once, as in Figure E.80. Events that belong to the
second trace are renamed to those with a prime, to distinguish them from those in the

first trace. Second, dependencies on the fence in the second trace are replaced with

CHAPTER 4. DYNAMIC TRACING 30

) e) e o e).

J . .

N e

[ma(8) f{ra57) {12 (8) | {Ta(5°)

J \

Figure 4.9: Task graph with fence elision

the actual dependencies on operations in the first trace. In the unrolled commands,
each operation that belongs to the second trace either immediately or transitively
depends on fence € that blocks operations in the first trace. After we remove that
fence, each operation individually waits for dependent operations in the first trace.
For each region instance of a task instance, the predecessors from the first trace are

identified as follows:

e If the task instance can write to the region instance r, all readers and writers

of r are added to the predecessors.

e If the task instance only reads from r, only the writers of r are added to the

predecessors.

For example, the original predecessor event e, of task instance Ty(R*) is merged with
event e,, which is the writer of R® in the first trace, to get a new predecessor event
ep; in Figure ERd. Once all uses of the fence are replaced with individual events,
transitive reduction and copy propagation are applied to the commands. (The result
is in IRd.) Finally, we generalize the optimized commands to get the final commands
in Figure for repeated replays. Note that the first two commands and the last
two commands are used only in the first and the last replay, respectively. Figure B9
shows a task graph from two replays with fence elision.

We can also concatenate two different traces in a similar way when one’s postcon-
dition subsumes the precondition of another. However, concatenating two different
traces is of less use than unrolling the same trace as the latter appears more frequently

in real applications.

CHAPTER 4. DYNAMIC TRACING 81

4.4 Evaluation

We have implemented dynamic tracing in Legion, a data-centric runtime system for
implicit task parallelism [I7]. The Legion runtime is a good testbed for dynamic
tracing as it faithfully implements the implicitly parallel tasking model described in
Chapter B. Legion has a dependence analysis pipeline similar to the one described in
Section P4 and builds a task graph using Realm [69], a low-level system for building
and executing distributed task graphs. We augment Legion’s existing dependence
analysis to generate graph calculus programs for traces. Graph calculus is imple-
mented as a set of commands that internally call the Realm API to construct task
graphs.

We evaluate dynamic tracing on the five Regent programs used in Chapter B,
which range from small and regular benchmarks to complex irregular applications:
Stencil, a 9-point stencil benchmark on 2D grids; Circuit, a circuit simulator for
unstructured circuit graphs; PENNANT and MiniAero, proxy applications for un-
structured meshes; and Soleil-X, a compressible fluid solver on 3D grids developed to
study turbulent fluid flow in channels. All programs were run with control replica-
tion [65], an optimization that is orthogonal to dynamic tracing. These programs have
competitive or better weak scaling performance than reference implementations [65],
where reference implementations are available. Table B shows benchmark metrics,
the number of the tasks and copies each node must analyze per iteration. Programs
using unstructured meshes have indirect indexing on regions, which require depen-
dencies to be resolved dynamically. For three programs (Stencil, PENNANT, and
MiniAero), we compare with publicly available reference MPI versions.

Due to their iterative nature, all five programs have a “main” loop where they

spend most of their execution time. For Stencil, Circuit, and PENNANT, we annotate

Stencil Circuit PENNANT MiniAero Soleil-X
Number of tasks 16 27 67 288 448
Number of copies 31 49 54 552 928

Table 4.1: Number of tasks and copies per iteration

CHAPTER 4. DYNAMIC TRACING 82

the body of this main loop. For MiniAero and Soleil-X, which implement a fourth-
order Runge-Kutta time marching scheme, we set the annotation on the body of this
time marching loop nested within the main loop. Each application has only one trace
because there is no change in the task mapping, and dynamic tracing can find one
idempotent recording of the trace. Identifying loops that merit annotation was trivial
for these programs and could easily be automated.

We use GCC 5.3 to compile the Legion runtime and the MPI reference imple-
mentations. Regent uses LLVM for code generation; we use LLVM 3.8. We report
performance for each application on up to 256 nodes of the Piz Daint supercom-
puter [4], a Cray XC50 system; nodes are connected by an Aries interconnect and
each node has 64 GB of memory and one Intel Xeon E5-2690 CPU with 12 physical

cores.

4.4.1 Runtime Overhead

Before we evaluate dynamic tracing on actual performance of the benchmark pro-
grams, we first study the benefit of dynamic tracing on runtime overhead. Runtime
overhead places a lower bound on the granularity of tasks that can be handled ef-
ficiently, and thus it puts an uppper bound to which programs strong scale; i.e.,
beyond certain scale, the execution is completely dominated by runtime overhead
and the speed-up saturates.

In a first study, we use the synthetic benchmark program in Figure 10, which
has two desirable properties. First, the program performs no actual computation so
we can count all execution time as runtime overhead. Second, the program exhibits
a simple pattern of task dependencies, which allows us to compute a bound on the
possible improvement from dynamic tracing. Each iteration of the outermost loop
launches N parallel tasks S times where N is the number of CPUs remaining after
allocating some for the runtime. The tasks form N chains of dependent tasks, where
the ith chain consists of S tasks that read and write region A[i]. Figure BT illustrates
the task graph of the synthetic benchmark program.

We place the tracing annotation on the outer for loop (lines 4 and 10) and vary

CHAPTER 4. DYNAMIC TRACING 83

task F(x) reads(x),writes(x)

while *:
begin_trace
for s = 0, S:
for i = 0, N:
F(A[i])

end_trace

Figure 4.10: Synthetic benchmark program

the value of S to study the effect of trace size (S - N) on the reduction of runtime
overhead. We also run the program with different numbers of runtime threads to
measure the benefit of parallel replay.

Figure B12a shows the improvement in the runtime overhead for four configu-
rations of parallel replay. The legend shows the number of runtime threads being
allocated for parallel dynamic dependence analysis and trace replay, and also the cor-
responding value of N. In all four plots, a longer trace leads to a greater improvement
in the runtime overhead as it better amortizes the constant overhead of initializing
every trace replay.

The plots also show that increasing the number of runtime threads has diminishing
returns, which occurs for two reasons. First, dynamic tracing only reduces the runtime

overhead for dependence analysis and there are several other steps in Legion’s task

F(A[0]) F(A[0]) a F(A[0])
F(A[1]) F(A[1]) a F(A[1])

[F(A[N - 1])]—»[F(A[N - 1])} - F(ANN — 1))

Figure 4.11: Task graph of the program in Figure B-10

CHAPTER 4. DYNAMIC TRACING 84

T
"4 ¢ 440 P o
i ”‘..eo'o"" i
,*03
g 6/ 1
g
)
>
2
= Y *
= —@- 1 thread (N = 11)
9| | -2 threads (N = 10)
-® 3 threads (N =9)
o L | | | | -4 4 threads (N = 8)
0 20 100 150 200
Trace Size (S-N)
(a) Improvement in the runtime overhead
30 [T I I I I]
£
e
E 20 | i
2, W
g \"0'
S 10) AAERYEFSIAAN S S Sdehid |-e 1 thread (N = 11)
é" —#-2 threads (N = 10)
-® 3 threads (N=09)
-4 4 threads (N = 8)

0 | | | | |
0 20 100 150 200

Trace Size (S-N)

(b) Average overhead per task with dynamic tracing

Figure 4.12: Runtime overhead of the synthetic benchmark program

processing pipeline. Second, the performance of parallel dependence analysis and
trace replay scale sub-linearly in the number of runtime threads, because both parallel
dependence analysis and trace replay have portions that run sequentially; Legion

performs a sequential preliminary analysis on tasks for parallelizing the subsequent

CHAPTER 4. DYNAMIC TRACING 85

dependence analysis and dynamic tracing sequentially initializes crossing events for
parallel trace replay. To better understand how these two factors incur diminishing
returns, we use the following model Ogep(1) of runtime overhead when the number

of runtime threads is 7"

C-.

Odep(T) = Caep - s(T) + %7
where Cyep, denotes the dependence analysis overhead with one runtime thread, Cpipe
is all the cost of Legion’s task processing pipeline except for dependence analysis, and

s(T) models the sub-linear speedup governed by Amdahl’s law; i.e.,

1

s = (1—p)+p/T"

where p is the proportion of dependence analysis that is parallelized (0 < p < 1). In
the model, we assume the cost Cpipe 0f Legion’s task pipeline except for dependence
analysis can be perfectly parallelized across T' threads as they are embarrassingly
parallel. The model Oyepiay(T") of the trace replay overhead when the number of
runtime threads is 7" is the same as Ogep(1') except that the dependence analysis

overhead is replaced with the parallel trace replay overhead Cheplay - S(T'):

C ipe
Oreplay(T> = C(replay : S(T) + ;—vp ’

where Cieplay denotes the trace replay overhead with one runtime thread. (We use the
same s(7") to model the sub-linearity of both parallel dependence analysis and trace
replay, to simplify the analysis, though using two different models does not change the

result.) The improvement I(7") in runtime overhead is a ratio of Ogep(1") t0 Oreplay (1)

Ogep(T) _ Claep + Chipe/ (s(T) - T)

I = Oreplay(T') a Creplay + Cpipe/ (s(T') - T)

Note that as T increases, I(T) approaches asymptote I = Coep/Chreplay; this means that
the improvement in the dependence analysis overhead becomes a dominant component
in I(T). Finally, the return R(T) = I(T' + 1) — I(T) of using an additional runtime

CHAPTER 4. DYNAMIC TRACING 86

21 |
&
S |
0 ! ! i
2 4
T

Figure 4.13: Diminishing return function R(T)

thread when there are T" threads reaches 0 as T goes to infinity (i.e., limy_, . R(T) =
0), which implies that R(T) is diminishing as 7 increases. The plot of R(T) in
Figure B7T3 also clearly shows the trend of diminishing returns. (For the plot, we fit
our model to the experimental results by assuming that dependence analysis is 10x
heavier than the rest of analysis pipeline, that 90% of parallel dependence analysis
and trace replay is perfectly parallelized, and that dynamic tracing eliminates 85%
of the dependence analysis overhead; i.e., 10Chipe = Cdep; Creplay = 0.15Cqep, and
p=0.9.)

Figure BT2H shows the average runtime overhead per task with dynamic tracing.
Average overhead per task decreases as trace size increases and eventually saturates
once the overhead for initializing trace replay is sufficiently amortized. The plots
exhibit a similar trend of diminishing returns as those in Figure B123, but because of
Amdahl’s law; the Cieplay - (1) term becomes dominant in Oyepiay(7") as 1" increases.

Next, we measure the extent to which dynamic tracing reduces the runtime over-
head for five benchmark programs. Again, the improvement in runtime overhead only
gives an upper bound on the possible improvement in strong scaling performance; the
actual strong scaling improvement is influenced by many factors (such as inter-node
communication) of which runtime overhead is just one, though it is often the most
important one. To isolate the runtime overhead from application work or communica-
tion, we apply the same methodology used for the synthetic benchmark: We modify

applications to only launch tasks and run no actual computations, and we count their

CHAPTER 4. DYNAMIC TRACING 87

Stencil Circuit PENNANT MiniAero Soleil-X
No Tracing 2.23 10.29 10.47 4.99 19.41
Tracing 0.29 0.53 0.86 0.68 2.26
Improvement 7.6% 19.5x 12.2x 7.4%x 8.6
Trace size A7 76 121 210 344
Trace optimization | (.72 1.70 3.90 1.75 5.86

Table 4.2: Runtime overhead per trace (all in milliseconds)

execution time as runtime overhead. We allocate three runtime threads as we believe
this configuration is most cost effective according to our first study with the synthetic
benchmark; the same configuration is also used in the strong scaling runs in the next
section. Table B2 summarizes the measured runtime overhead per trace. In all five
programs, dynamic tracing reduces the runtime overhead by more than 7x. Circuit
and PENNANT enjoy noticeably greater improvement than the others because they
have reduction tasks and copies that make dynamic dependence analysis more expen-
sive. Table B2 also shows the one-time cost for trace optimization, which is just a

few milliseconds even for the longest trace.

4.4.2 Strong Scaling Performance

In this section, we evaluate dynamic tracing on strong strong scaling performance of
the benchmark programs. We demonstrate that with dynamic tracing the benchmark
programs strong scale well up to 256 nodes for problem sizes for which they stop
scaling at 32 or fewer nodes otherwise. We measured performance when the program
reached steady state; i.e., the state where the program starts replaying a recording
repeatedly. In all experiments the Legion runtime is configured to use 3 CPUs (out
of 12) per node. To study the effect of optimizations for idempotent recordings on
performance, we also measure the performance of runs where dynamic tracing is used
without those optimizations.

All tables in this section (Tables BZ3--8) have three columns: column No Tracing
for the baseline performance without tracing, column Tracing for the performance with

tracing, and column Tracing(no opt.) showing performance where dynamic tracing is

CHAPTER 4. DYNAMIC TRACING 38

Problem size: 0.4 x 107 cells
Nodes . . . MPI

No Tracing Tracing(no opt.) Tracing 0 ranks 192 ranks
1 1.0 1.0 1.0 0.9 1.0
2 2.0 2.0 2.0 1.9 2.1
4 4.1 4.0 4.1 3.7 4.1
8 8.1 8.0 8.2 7.4 8.2
16 16.0 15.7 16.2 14.8 16.3
32 31.3 30.1 32.0 29.2 32.4
64 50.1 4.3 61.9 57.9 63.3
128 68.3 108.0 126.3 116.6 134.3
256 77.2 269.7 320.0 259.8 387.5

max(Tracing) 19
max(No Tracing) '

Table 4.3: Strong scaling performance of Stencil

used without optimizations. Some tables (Tables BZ3-74) have additional columns
showing performance of the MPI reference. The tables show throughputs normalized
by the baseline performance on a single node (i.e., the 1-node number in No Tracing).
Numbers in bold face show the maximum throughput achieved in each configura-
tion; the improvement in strong scaling performance is calculated by dividing this
maximum throughput with dynamic tracing to that in the baseline configuration.

Underlined numbers in column Tracing(no opt.) mean that the runs performed worse

than those without dynamic tracing.

Stencil Table B3 shows the strong scaling performance of Stencil. Dynamic tracing
improves the speedup of Stencil by 4.2x. Turning off optimizations for idempotent
recordings is detrimental to the achievable improvement; it degrades the maximum
speedup by 16% on 256 nodes. Furthermore, some runs without the optimizations
are slightly slower than the baseline, because jitter in the execution is magnified by
spurious task dependencies from fences between replayed traces, which do no exist in
the baseline execution.

The MPI version of Stencil 21% is faster than the Legion version (column 12 ranks).

This difference is due to the fact that Legion requires resources for its runtime system

CHAPTER 4. DYNAMIC TRACING 89

Problem size: 10° cells
Nodes . . . MPI
No Tracing Tracing(no opt.) Tracing 3 ranks
1 1.0 0.9 1.0 0.3
2 2.1 1.8 2.1 0.6
4 4.2 3.8 4.4 1.3
8 8.1 8.7 9.0 3.0
16 14.9 17.3 16.8 7.3
32 21.7 31.3 32.1 16.0
64 24.0 54.0 55.0 30.0
128 23.7 90.9 94.8 51.0
256 22.9 121.4 123.4 58.2
max(Tracing)
- 5.1
max(No Tracing)

Table 4.4: Strong scaling performance of MiniAero

to make dynamic decisions (e.g., about tracing). When the MPI version uses the

same number of application processors as Legion (column 9 ranks), it performs worse

than the Regent version (by 19%).

MiniAero Table B4 shows the strong scaling performance of MiniAero. MiniAero
enjoys greater improvement (5.1x) than Stencil as it has a longer trace (210 vs.
47). Turning off optimizations for idempotent recordings degrades the speedup by an
average of 6% and a maximum of 15%. Those optimizations are important especially
at small node counts because the imbalance in workload of MiniAero’s tasks becomes
greater on fewer nodes. The MPI reference of MiniAero, which only allows the number

of ranks to be a power of 2, starts 3x slower than the Regent version, which is

Tracing No Tracing
Number of tasks per processor 36
Average number of regions per task 3.1
Average time per iteration 6.6ms 34ms
Average task granularity 183us 940us

Table 4.5: Average task granularity for MiniAero

CHAPTER 4. DYNAMIC TRACING 90

Problem size: 29 x 10° zones

Nodes No Tracing Tracing(no opt.) Tracing 9 ranksMPl|2 ranks
1 1.0 1.0 1.0 0.9 1.2
2 2.2 2.2 2.2 1.9 2.3
4 4.5 4.8 4.6 3.8 4.6
8 8.6 8.4 9.1 7.6 9.3
16 16.6 15.8 16.8 14.9 18.3
32 29.6 & 30.3 29.2 36.4
64 54.0 55.8 60.8 56.7 71.8
128 71.4 106.2 117.6 115.6 139.6
256 68.8 185.0 198.5 211.4 250.1

max(Tracing) 98
max(No Tracing) '

Table 4.6: Strong scaling performance of PENNANT

consistent with [65], and loses scalability earlier.

We can calculate the average task granularity supported by dynamic tracing, as
tasks in MiniAero are almost completely overlapped with the runtime overhead and
copies. Table EZ3 shows the minimum time per iteration and the number of tasks
each processor runs, from which we derive the average task granularity. The average
task granularity is 183 microseconds with dynamic tracing, whereas without dynamic

tracing the runtime can sustain only tasks that are on average 940 microseconds long.

PENNANT Table B8 shows the strong scaling performance of PENNANT. The
improvement in strong scaling performance is 2.8, which is smaller than that of
Stencil despite the fact that PENNANT has a longer trace. Unlike the other pro-
grams, the main loop in PENNANT is guarded by a convergence predicate that in
turn prevents a replay of the trace until the condition is resolved. A trace replay
overlaps with tasks only for 25% or less of the time per iteration, which explains
an improvement that is (approximately) 4x off of the improvement in the runtime
overhead. The use of idempotent recordings improves performance by an average of

6% and a maximum of 11%.
The MPI version of PENNANT is 26% faster than the Legion version (column 12

CHAPTER 4. DYNAMIC TRACING 91

Nodes Problem size: 74 x 10 wires
No Tracing Tracing(no opt.) Tracing
1 1.0 1.0 1.0
2 2.0 2.0 2.0
4 3.9 4.0 3.9
8 7.3 7.5 7.6
16 13.3 13.6 14.0
32 24.7 25.5 25.9
64 18.0 48.1 49.7
128 8.3 87.4 90.2
256 4.2 133.7 1314
max(Tracing)
: 5.3
max(No Tracing)

Table 4.7: Strong scaling performance of Circuit

ranks). Again, this difference is due to Legion allocating 25% of the resource (i.e., 3
CPUs out of 12) for its runtime system. When the MPI version uses the same number
of CPUs as Legion for application tasks (column 9 ranks), MPI PENNANT is slower
than the Regent version up to 128 nodes and becomes 6% better on 256 nodes.

Circuit Table EZ7 shows the strong scaling performance of Circuit. The improve-
ment in Circuit is greater (5.3x) than in MiniAero even though MiniAero’s trace is
longer, because Circuit has greater runtime overhead than MiniAero (Table B72) due
to its temporary reduction buffers, which are reused in replayed traces. Circuit also
shows the biggest discrepancy between the improvement in the runtime overhead and
strong scaling simply because the runs did not reach a point where they are limited
by the replay overhead. Finally, Circuit is immune to the absence of optimizations
for idempotent traces, because Circuit has all-to-all dependencies between tasks on
each node, which results in sightly longer sequences of graph calculus commands after

fence elision.

Soleil-X Table B8 shows the strong scaling performance of Soleil-X. The improve-
ment is greatest (7.0x) among all five benchmark programs, because Soleil-X has the

longest trace. The use of idempotent recordings brings additional improvement of an

CHAPTER 4. DYNAMIC TRACING 92

Nodes Problem size: 8.4 x 10° cells

No Tracing Tracing(no opt.) Tracing
1 1.0 1.0 1.0
2 2.0 2.0 2.0
4 3.3 3.8 3.9
8 5.3 6.9 7.2
16 7.6 11.9 12.7
32 9.0 17.9 18.7
64 10.2 31.5 32.4
128 10.6 53.0 54.8
256 5.7 69.5 74.0

max(Tracing)
: 7.0
max(No Tracing)

Table 4.8: Strong scaling performance of Soleil-X

average of 4% and a maximum of 7%.
Like MiniAero, tasks in Soleil-X are almost completely overlapped with the run-

time overhead and copies, and thus we can calculate the average task granularity sup-
ported by dynamic tracing. Table B29 shows the average task granularity of Soleil-X;
dynamic tracing can support tasks of 413 microseconds on average. Note that the
task granularity for Soleil-X is twice that for MiniAero because Soleil-X has roughly

twice as many regions per task, leading to twice as many copies on average to replay

per task (5.4 regions per task on average vs. 3.1).

Soleil-X
Tracing No Tracing
Number of tasks per processor 56
Average number of regions per task 5.4
Average time per iteration 23ms 161ms
Avergae task granularity 413us 2,879us

Table 4.9: Average task granularity for Soleil-X

CHAPTER 4. DYNAMIC TRACING 93

s
W W
CHT

T T T T e T R P L b o
gm0 TSR bl B e A T N o o
i W | il D i I ”MU}HM“\”W‘ mmulum‘\Lnlulv HW‘\JM\ i L] N i] R il
= i=e= B sty T "‘ﬂc.'.'::\,"m"u:sm
! = G i Y i
I T m T T i =T 0 /1) 1 i
i M TR S M
i IR g i
= ..m...",.....m... e — st i) '
LTINS HWHHHHHWHHHH Vdly I | T LI L \uummmuuunmumrmumlmwfﬂw Hum]

1 = Ti 1iEE S T -
T T T T i unmwnu T T S T T T Tl T il
Tl
bk
CUNRCRCORTTENR RTINS ot
Al e
AW T

| "
| |
W
T
T

r
] i
i |
TP 1 0 I 1
1L L m
gl i
T T S
T

T JJ T T
Huuulmuuuul‘w‘m"_ﬂﬂru T Luu Thr TR iy o i
i i uu e BN n
DR TR TR um i |
10
T TR R TR R

y L
il I Iy i | i
T O A A T T V T T T I T i
i muu‘ i m Tl i i L TR e i T Y i
n i T T LT R T il
AN v " i \‘\” i

PR 1
1" VT i

i
s
i

i
i i

m prrrvrr‘rrv—vnwwmmmmmvr\ TR AT TR T
1 TR 1 s 0 o e

I MR T W

NN T AT O AT H I T T i il
W o - ‘Ju:m.""‘"' “““‘"”"” o o "H ‘J"‘.’H‘”f.' R il
T T T IY(HHFIHHHHIH\H

= 7 ! i
oy T - u Wi B T T i
Uil L0 LR T i Lol il i ¥
b LA T ! 1 1
¥ o FUEL T W 4

Wi

Figure 4.14: Task graph of S3D-Legion simulating n-dodecane for a single time step

4.4.3 S3D-Legion

We also evaluate dynamic tracing on S3D-Legion [[70], an exascale combustion simu-
lation package using the Legion runtime system. S3D-Legion is designed to perform
high-fidelity reactive flow direct numerical simulation (DNS) of turbulent combustion.
As the DNS problem that S3D-Legion solves is computationally intensive, S3D-Legion
makes heavy use of GPUs and employs a custom built DSL compiler (Singe [16]) for
generating optimized GPU kernels for different chemical species. Legion plays an
essential role in identifying and enforcing complex dependencies between those GPU
tasks and overlapping the execution with necessary data transfers to maximize the
throughput.

S3D-Legion is a real-world example illustrating why we need specialization within
a dynamic runtime system. Figure 14 shows the task graph of S3D-Legion for a sin-
gle time step execution of the n-dodecane (a partially pre-mixed diesel fuel surrogate)
simulation. The task graph has six horizontal clusters of nodes, which is consistent
with the fact that S3D-Legion uses a six-stage Runge-Kutta marching scheme [46].
The dependence pattern in this graph is highly complex and irregular, and there-
fore Legion’s dynamic dependence analysis is key to capturing all dependencies both

soundly and precisely. However, despite the complexity and irregularity, tasks in

CHAPTER 4. DYNAMIC TRACING 94

Problem size: 25.2 x 10 cells Problem size: 25.2 x 109 cells
- NO TRACING | - NO TRACING |
= 200 1 = 150 |
> - TRACING > - TRACING
5 5
@U 150 - @O
2 S 100) |
B 100 1 =
oY oY
o o
s 50| — | 5 |
= =
= =
1664 128 256 512 1664 128 256 512
Total nodes Total nodes
(a) Periodic boundary condition (b) Non-periodic boundary condition

Figure 4.15: Strong scaling performance of S3D-Legion

S3D-Legion form only three distinct traces of tasks: two traces that include tasks for
periodic checkpointing, and another one that runs for the majority of execution time.
Hence, dynamic tracing still can reduce the runtime overhead involved in identifying
the complex dependence pattern by specializing those traces.

We performed strong scaling experiments on Piz Daint. We ran an n-dodecane
simulation for the problem size of 25.2x10° cells in total. The performance was mea-
sured once S3D-Legion reached a steady state. Figure B3 shows the strong scaling
performance of S3D-Legion from 16 nodes to 512 nodes. For the problem size we chose,
the runs are limited by the runtime overhead at 64 nodes without dynamic tracing.
With dynamic tracing, the performance scales further up to 512 nodes and the strong
scaling performance is improved by 3.7x for a periodic boundary condition and 3.4 x
for a non-periodic boundary condition. The average task granularity that the runtime
can support becomes as short as 200 microseconds. Note that performance is slightly
worse with the non-periodic boundary condition due to some reductions that cannot

be overlapped with the computation.

Chapter 5

Related Work

Research on automatic program parallelization has a rich history. We discuss prior

efforts that are closely related to our hybrid approach.

5.1 Composable and Configurable Parallelization

High Performance Fortran (HPF) [@7] and a family of related systems [25,47] are
early efforts that recognized the problem of composability and configurability in auto-
parallelization. These systems address the problem with a solution similar to ours:
they provide control over data partitioning via data distributions, an annotation lan-
guage for describing primary data partitions. A data distribution determines each
rank’s ownership of the program data. (The coarsest level of parallelization in a pro-
gram is often referred to as a rank. In most applications a program is parallelized so
that there is one rank per machine node.) The compiler then infers non-local data
accesses in each rank (i.e., accesses to the data that is not owned by the rank), based
on the data distribution, and inserts communication and synchronization to preserve
sequential semantics of the program. When programs have subroutines that share
data with their caller, those subroutines can declare what data distribution they ex-
pect. In cases where the caller’s distribution is different from the callee’s, the compiler

is responsible for the data transposition.

95

CHAPTER 5. RELATED WORK 96

The biggest drawback of these systems is that data distributions are “not them-
selves data objects” [47], which limit composability. Unlike the partitioning con-
straints in our work, which are descriptive, data distributions are prescriptive; i.e.,
they are compiler directives requesting data partitions of a particular shape. Because
of this nature, they cannot specify a subroutine parametric in the caller’s data distri-
bution. A special kind of data distribution that inherits the caller’s data distribution
was proposed to addressed this issue, but no compiler has ever fully supported it
because of the implementation complexity [47].

Another drawback is that data distributions provide little control over data parti-
tioning. Data distributions only describe the ownership of data in each rank and the
implementation of non-local data accesses is internal to the compiler. Hence, even
when the programmer knows that his performance issue is due to inefficient non-local
data accesses, he cannot fix the issue because the fix cannot be expressed by data
distributions, the only tunable knob available to the programmer.

The key insight of our work is that first-class data partitions, which were then
considered infeasible due to the runtime overhead, can elegantly solve issues with
which the compiler-based systems like HPF would struggle. In our performance eval-
uation, we demonstrate that fine-grained control over the data partitioning process
via partitioning constraints facilitates composability and performance tuning.

Halide [32,59] and Tiramisu [12] are DSL compilers with a programmable inter-
face to configure performance-sensitive parallelization parameters. Instead of auto-
matically choosing a parallelization strategy for a given program, these compilers use
a sub-language of schedules, with which the program can describe its parallelization
strategy. Scheduling commands include directives for code transformations, such as
tiling and reordering, which are choices orthogonal to data partitioning but could
be incorporated in our auto-parallelizer. By design, the parallelization in these DSL
compilers is semi-automatic because programs must provide a schedule (although
automatic scheduling has been presented for shared-memory Halide programs [55]),
whereas interface constraints are optional in our data partitioning approach that is
otherwise fully automated. One issue with Tiramisu’s design is that scheduling com-

mands in Tiramisu also specify data movement and synchronization (e.g., send and

CHAPTER 5. RELATED WORK 97

receive for inter-node communication), which makes them no longer a strictly per-
formance decision but can also affect correctness; programmers must guarantee that
their scheduling commands are semantically correct. On the other hand, external
constraints in our approach cannot compromise the correctness of data movement
and synchronization inserted by the runtime system.

Another example of a compiler with tunable performance is Sequoia [36, 44, 62)].
Similar to our programming model, Sequoia has a mapping phase where the compiler
statically assigns tasks to processors and data collections to memories. Programmers
can control this mapping phase by providing mapping decisions for their programs.
Besides mapping decisions, programmers can also specify tunable parameters, such as
a tile size of a loop, which affect the performance of their programs. Mapping decisions
and tunable parameters in Sequoia can be changed independently of programs and
even tuned automatically by some search process [62]. Although Legion, the tasking
system used in our evaluation, inherits this capability from Sequoia, performance
optimization through mapping decisions and tunable parameters is not pursued in

our work as it is an optimization orthogonal to the program auto-parallelization.

5.2 Distributed Code Generation for Affine Pro-

grams

Because of their ubiquity and importance in high performance computing, affine pro-
grams have been one of the major targets for the auto-parallelization on distributed
memory machines; distributed code generation for affine programs indeed has been
studied in great depth over the past decades [[d,9, 21, 26,29, 87,47, 60]. An important
property of affine programs is that the working sets of their data accesses can be ex-
pressed by polyhedra, which makes dependence analysis and communication inference
feasible at compile time, using well known methods [28,58].

A major challenge in distributed code generation for affine programs is to generate
efficient communication code. Previous approaches [7,9,21,26,29] aim at minimizing

the volume of inter-processor communication, but they are still sub-optimal because

CHAPTER 5. RELATED WORK 98

the exact volume cannot be computed without knowing the processor count, the
dimension of data, and the exact mapping of tasks to processors, all of which are un-
available at compile time. Furthermore, an optimal placement of communication that
maximizes the overlap between communication and computation is even harder to de-
termine at compile time, because the execution time of both is unknown. Our hybrid
approach is free of these issues because the communication is resolved by the runtime
system; the runtime system can accurately compute the volume of communication
and identify exactly when and to where the data must be sent.

Although we use an optimization specific to affine data accesses in Section B2,
our constraint-based framework is agnostic to whether data accesses in the program
are affine or irregular. Further optimizations based on the convexity of affine data
accesses could be easily incorporated in the implementation of data partitions and

DPL operators with no fundamental changes to our framework.

5.3 Inspector/Executor Frameworks

Irregular accesses are a major challenge for auto-parallelizing compilers because their
working sets cannot be resolved at compile time. The state-of-the-art technique for
handling irregular accesses is the Inspector/Executor (I/E) framework [I5, 50, 60, 61,
74]. The I/E framework defers the analysis of irregular accesses to a runtime in-
spector, which records working sets of those irregular accesses during execution and
fetches non-local data from remote nodes if necessary. The recorded working sets are
consumed by an ezecutor, the original code modified to operate on those working sets.

Although the I/E techniques can be effective, they often produce the code that
is hard to understand and compose; these techniques commonly meta-program the
inspector code that tracks working sets in some custom data structure, and the deci-
sions and heuristics made in this meta-programmed code are neither transparent to
nor configurable by programmers. An important observation in this dissertation is
that a programming language can natively express inspectors using first-class data
partitions and partitioning operators, which can address the issues of the I/E frame-

work. In our approach, a data partition expresses a working set of an irregular access

CHAPTER 5. RELATED WORK 99

and a synthesized DPL program constructs this working set at runtime, with the help
from runtime system to fetch remote data for the partition As we demonstrated in Sec-
tion B4, this native support enables configurable and composable auto-parallelization
even for programs with irregular accesses.

The sparse polyhedral framework [67], which is used as a foundation for the I/E
framework, is similar in spirit to our approach; using sparse polyhedrons as a high-
level abstraction, the framework facilitates the composition of auto-generated inspec-
tor code. Sparse polyhedrons are useful for applying compiler transformations to the
inspector code as they precisely capture the shape of working sets. However, sparse
polyhedrons are still internal to the compiler and thus cannot be used as an interface
for mixing the inspector code with the manually parallelized code, whereas partitions
and constraints in our approach are a user-facing interface for configuring the auto-
parallelization process. We believe that the two approaches are complementary to

each other.

5.4 Languages with Data Parallelism

ZPL [66] is an array-based programming language for implicit parallelism. ZPL pro-
grams have a global view of arrays and each statement accesses arrays in a vector
form, which naturally reveals data parallelism within the statement. To express di-
verse access patterns in practice, ZPL provides regions, an abstraction that describes
a subset of a global array, and operators to define regions. With regions and vector
statements, one can succinctly write a complex array-based program for distributed
memory systems with no explicit parallelization. However, irregular applications with
dynamic behavior, which can be easily expressed and efficiently executed in our hybrid
approach via task parallelism, are not amenable to ZPL’s array-based programming
style. Chapel [23] overcomes this limitation by taking a multi-resolution approach
providing a suite of multiple parallelization paradigms, which is in spirit similar to
our hybrid approach. However, Chapel’s task parallelism falls short as it requires
explicit parallelization with manual synchronization and communication that is not

efficiently composed with its support for implicit data parallelism.

CHAPTER 5. RELATED WORK 100

As we described in Section B, our automatic data partitioning is motivated by
the shortcomings of Liszt [20,33], a DSL for mesh-based PDE solvers. The syntactic
definition of parallelizable loops is similar to the single-phase rule in Lizst, which
requires kernels to have only one phase of access to each data field. Liszt achieves an
end-to-end auto-parallelization on heterogeneous, distributed memory machines [33],

but provides no mechanism for configuration or composition.

5.5 Constraint-Based Program Analysis

Many program analysis problems can be reduced to constraint solving problems for
which off-the-shelf solvers exist [14,37,85,73]. The theory of first-class data partitions,
however, is not a standard theory, nor is it obvious how to convert it into one, because
the solutions of our constraints are functional programs with a special set of function
primitives (the DPL operators). One of our contributions is the formalization of
automatic parallelization as a space of possible data partitionings captured by a

system of constraints, together with an algorithm for resolving those constraints.

5.6 Efficient Task Graph Representations

Dynamic tracing is a first step towards efficient tasking in implicitly parallel tasking
systems; any tasking systems [I0, 17, 30, 43] that depend on dynamic dependence
analysis to convert implicit parallelism to a task graph, an explicit representation of
task parallelism, can benefit from our dynamic tracing technique. Hoque et al. [43]
have also reported that implicitly parallel tasking systems require a larger granularity
of tasks than explicitly parallel programs to be efficient because of runtime overhead,
which implies that dynamic tracing could greatly reduce this gap between the two
paradigms.

Traces that are specialized in dynamic tracing can be further optimized once a
tasking system provides a more efficient representation of a task graph; the current
design of dynamic tracing requires task graphs to be reconstructed by executing

graph calculus commands, but this overhead can be further reduced by compiling

CHAPTER 5. RELATED WORK 101

those commands to a direct task graph representation. Execution templates [53] are
one such example. An execution template is an explicitly parallel representation for
which the runtime system provides efficient distributed execution via a constant time
instantiation of the whole template on each node (it still requires messages linear
in the number of nodes). Execution templates require each command to specify a
before set, i.e., a set of previous commands for which the command must wait, the
information that a specialized trace already possesses. We believe that dynamic
tracing and execution template are complementary to each other.

PTG (Parameterized Task Graph) [22,27)] is another task graph representation for
efficient tasking. A PTG expresses multiple task graphs with a single parameterized
task graph; each value of the parameter leads to a distinct task graph instance of
the PTG. Instances of a PTG explicitly enumerate each task’s dependencies on other
tasks. To express irregular task dependencies, PTGs provide dependencies predicated
by conditions on parameter values. Because task dependencies are already material-
ized in PTGs, instances of PTGs require no additional runtime analysis and are ready
for direct execution. PTGs are appealing as they are a constant-size description of
multiple task graphs, and summarizing similar subgraphs in a trace’s task graph into
a PTG would be beneficial for the space usage. However, the fact that PTGs cannot
express task dependencies that are determined by program data limits their applica-
bility to irregular applications, for which dynamic dependence analysis in implicitly
parallel tasking systems is most useful.

TensorFlow [6] takes an interesting approach to tasking that is slightly different
from other tasking systems for implicit parallelism; task graphs in TensorFlow contain
nodes for describing control flow [75], such as while loops and switch statements,
whereas other tasking systems piggy back on the host language’s constructs to resolve
a program’s control flow and then construct a DAG of tasks. Embedding control flow
in task graphs allows a single task graph having a while loop to concisely represent
task graphs from all the loop iterations, which eliminates the overhead of repeated
instantiations for those graphs. Currently, dynamic tracing accepts only sequences
of tasks with no control flow, and extending it to accept CFGs of tasks would enjoy

similar benefits.

CHAPTER 5. RELATED WORK 102

5.7 JIT Compilers

The idea of JIT specialization was first popularized for interpreted implementations
of languages. Some languages use an interpreter to achieve portability in the low-
level program representation, such as the Java byte code, and other languages, such
as Python and JavaScript, have a dynamic type system, which in general prevents
an ahead-of-time compilation to efficient binary code due to the absence of type
information. JIT compilers for these languages eliminate overhead of the interpreter
by specializing traces of code to platform specific binaries, similar to dynamic tracing
that reduces the dependence analysis overhead in a tasking system by specializing
traces of tasks.

Work on JIT compilers [I3, 18, 19,24,34,39] devotes considerable effort to extract-
ing traces of a meaningful size during program execution. Traces are found incremen-
tally across different control blocks and stitched together to comprise a longer trace
that potentially has more optimization opportunities. Once traces are discovered,
compiling them and running their binary code in a shared memory environment is
well understood. In contrast, dynamic tracing relies on traces being specified, and
instead focuses on describing how to capture the resulting task graphs and soundly
replay them. A major difference is that dynamic tracing also must deal with the
additional complexity of operating correctly in distributed memory environments, en-

suring that data is correctly copied and placed in the machine.

5.8 Memoization for Stateful Algorithms

Avoiding an expensive re-computation using memoization is a well-known practice.
Although memoization for pure functions can be done trivially by tabularizing input-
output pairs, one must track changes in the state to correctly memoize stateful algo-
rithms. To soundly memoize the dynamic dependence analysis algorithm, dynamic
tracing checks the precondition for safe replay and applies the postcondition, a sum-
mary of the changes in valid region instances.

FastSim [63], a simulator for an out-of-order processor, employs a memoization

CHAPTER 5. RELATED WORK 103

similar to dynamic tracing; the simulator records the simulator actions, such as mea-
suring cycles for a given instruction or estimating cycles for a memory operation, for
a given microarchitecture configuration and replays the recorded actions, called fast
forwarding, when the same configuration reappears. To simplify memoization, the
fast-forwarding does not check the simulator’s cache state, which is highly variable,
and it instead aborts the replay and fall backs to a detailed simulation whenever a
memory operation in a replay exhibits different behavior due to a cache inconsistency.
However, this approach would not be profitable for dynamic tracing because purging
a (partially) constructed task graph is much more expensive than precisely tracking

and altering the validity of region instances for a correct memoization.

Chapter 6
Conclusion

This dissertation has presented a hybrid approach to automatic program paralleliza-
tion. In the first stage of our approach, an auto-parallelizer converts data parallelism
in a program into task parallelism. To enable the seamless composition of an auto-
parallelized part and the rest of the code parallelized manually, the auto-parallelizer
allows programmers to guide the automated process by specifying constraints that
describe the interface between those parts. In the next stage, task parallelism in the
program from the previous stage is fulfilled by a tasking system that automatically
identifies and realizes opportunities for parallel task execution. The efficiency of this
tasking system is improved by dynamic tracing, a technique that reduces runtime
overhead by eliminating redundancy in the runtime analysis for recurring traces of
tasks. In sum, our hybrid approach maximizes the benefit of automatic parallelization
and yet allows implicitly parallel programs to have performance comparable to those
that are parallelized with explicit synchronization and communication.

The auto-parallelizer designed in this dissertation only handles data parallel loops
that have independent iterations. Omne possible extension is support for wavefront
parallelism, i.e., loops whose iterations have dependencies only on some of the other
iterations. An obvious strategy would be to fall back to a full-blown polyhedral
analysis, but a more intriguing approach is to cast it as a language design problem:
How can we design language primitives so that the dependence structure is surfaced

syntactically? We believe that well-designed abstractions would greatly simplify the

104

CHAPTER 6. CONCLUSION 105

auto-parallelizer’s work to “guess” the programmer’s intention and also allow the
dependencies to be captured easily by partitioning constraints.

The cost model of the constraint solver is another avenue of improvement. The
current constraint solver simply uses the number of data partitions constructed by
the synthesized DPL code as its cost model, which it attempts to minimize. However,
minimizing the number of partitions is not necessarily an optimal strategy and there
are cases where having more partitions is beneficial. An interesting question is then
how we can quantify this extra benefit and whether we can capture it in the form
of constraints so that it is compatible with the rest of the reasoning process. Some
of the reasoning might need runtime information for precise results, in which case
the compiler’s role would be to minimize the amount of such deferred reasoning to
runtime.

Eliminating the overhead of dependence analysis is an important use of recurrent
traces but not the only one. The current implementation of dynamic tracing still
repeatedly constructs task graphs for traces using Realm API calls whose overhead
could be further reduced. One possible optimization is to construct task graphs at
a larger granularity; instead of running graph calculus commands in an interpretive
manner, the commands can be compiled to an efficient internal representation for
task graphs, which would be instantiated in bulk upon requests from dynamic tracing.
This internal representation would better amortize the overhead of instantiation and
can employ a more efficient mechanism to enforce task dependencies than the default
one used in the general case.

An important message in this dissertation is that program optimization techniques
must be studied in the context of realistic programming systems and not simply pur-
sued in isolation. Components in software become diverse as the software grows and
one cannot expect a particular optimization to apply to an entire program. Finding
the right interface between components to which an optimization is applicable and
those components that are out of scope for the optimization becomes paramount to
making that optimization usable in practice. In this dissertation, we have addressed

two instances of this interface problem: A constraint-based approach to composable

CHAPTER 6. CONCLUSION 106

data partitioning, which enables the composition of programs parallelized and opti-
mized by different means, and a tracing technique that correctly mixes two modes
of task graph construction, one that efficiently builds the graph by running a graph
constructing program and another that incrementally discovers dependence edges for
a node via runtime analysis. The problem of designing such composable interfaces
for program optimization is, we believe, one of the most important for the design of

practical compilation-based systems.

Bibliography

1]

CUDA programming guide 9.1. http://docs.nvidia.com/cuda/pdf/CUDA C |
Programming Guide.pdf, Sept. 2013.

Predictive science academic alliance program (psaap) ii. https://exascale.
stanford.edu/, 2013.

The Open Community Runtime interface. https://xstackwiki.modelado.org/
images/1/13/0cr-v0.9-spec.pdf, 2014.

Piz Daint & Piz Dora - CSCS. http://www.cscs.ch/computers/piz daint,
2018.

Sierra Supercomputer - LLNL. https://computing.llnl.gov/computers/
sierra, 2018.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon
Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale ma-
chine learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016., pages
265-283, 2016.

107

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://exascale.stanford.edu/
https://exascale.stanford.edu/
https://xstackwiki.modelado.org/images/1/13/Ocr-v0.9-spec.pdf
https://xstackwiki.modelado.org/images/1/13/Ocr-v0.9-spec.pdf
http://www.cscs.ch/computers/piz_daint
https://computing.llnl.gov/computers/sierra
https://computing.llnl.gov/computers/sierra

BIBLIOGRAPHY 108

[7]

[11]

[13]

Vikram S. Adve and John M. Mellor-Crummey. Using integer sets for data-
parallel program analysis and optimization. In Proceedings of the ACM SIG-
PLAN 98 Conference on Programming Language Design and Implementation
(PLDI), Montreal, Canada, June 17-19, 1998, pages 186-198, 1998.

Alexander Aiken. Introduction to set constraint-based program analysis. Sci.
Comput. Program., 35(2):79-111, 1999.

Saman P. Amarasinghe and Monica S. Lam. Communication optimization and
code generation for distributed memory machines. In Proceedings of the ACM
SIGPLAN 1993 Conference on Programming Language Design and Implementa-
tion, PLDI 93, pages 126-138, 1993.

C. Augonnet et al. StarPU: A unified platform for task scheduling on hetero-
geneous multicore architectures. Concurrency and Computation: Practice and

Ezxperience, 23:187-198, February 2011.

Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin,
Federico Massaioli, Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang.
The design of openmp tasks. IEEE Trans. Parallel Distrib. Syst., 20(3):404-418,
2009.

Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Ab-
durrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman
Amarasinghe. Tiramisu: A polyhedral compiler for expressing fast and portable
code. In Proceedings of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization, CGO 2019, pages 193-205, 2019.

Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A transpar-
ent dynamic optimization system. In Proceedings of the ACM SIGPLAN 2000
Conference on Programming Language Design and Implementation, PLDI "00,

pages 1-12, 2000.

BIBLIOGRAPHY 109

[14]

[15]

[17]

[19]

[20]

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovi’c, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Proceed-
ings of the 23rd International Conference on Computer Aided Verification (CAV
'11), 2011.

Ayon Basumallik and Rudolf Eigenmann. Optimizing irregular shared-memory
applications for distributed-memory systems. In Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of parallel programming, pages
119-128. ACM, 2006.

Michael Bauer, Sean Treichler, and Alex Aiken. Singe: leveraging warp specializa-
tion for high performance on gpus. In ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 14, Orlando, FL, USA, February
15-19, 2014, pages 119-130, 2014.

Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion: ex-
pressing locality and independence with logical regions. In SC' Conference on
High Performance Computing Networking, Storage and Analysis, SC ’12, Salt
Lake City, UT, USA - November 11 - 15, 2012, page 66, 2012.

Michael Bebenita, Florian Brandner, Manuel Fahndrich, Francesco Logozzo, Wol-
fram Schulte, Nikolai Tillmann, and Herman Venter. Spur: A trace-based jit
compiler for cil. In Proceedings of the ACM International Conference on Object

Oriented Programming Systems Languages and Applications, OOPSLA ’10, 2010.

Michael Bebenita, Mason Chang, Gregor Wagner, Andreas Gal, Christian Wim-
mer, and Michael Franz. Trace-based compilation in execution environments
without interpreters. In Proceedings of the Sth International Conference on the

Principles and Practice of Programming in Java, PPPJ "10, 2010.

Gilbert Louis Bernstein, Chinmayee Shah, Crystal Lemire, Zachary DeVito,
Matthew Fisher, Philip Levis, and Pat Hanrahan. Ebb: A DSL for physical
simulation on cpus and gpus. ACM Trans. Graph., 35(2):21:1-21:12, 2016.

BIBLIOGRAPHY 110

[21]

[22]

[23]

[24]

[25]

[20]

[27]

28]

Uday Bondhugula. Compiling affine loop nests for distributed-memory parallel
architectures. In Supercomputing (SC), page 33. ACM, 2013.

G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and J. Don-
garra. Dague: A generic distributed dag engine for high performance computing.

In 2011 IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, 2011.

B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programmability and
the chapel language. Int. J. High Perform. Comput. Appl., 21(3):291-312, August
2007.

Mason Chang, Edwin Smith, Rick Reitmaier, Michael Bebenita, Andreas Gal,
Christian Wimmer, Brendan Eich, and Michael Franz. Tracing for web 3.0:
Trace compilation for the next generation web applications. In Proceedings of the
2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Ezecution
Environments, VEE 09, 2009.

Barbara M. Chapman, Piyush Mehrotra, and Hans P. Zima. Programming in
vienna fortran. Scientific Programming, 1(1):31-50, 1992.

Michael Classen and Martin Griebl. Automatic code generation for distributed
memory architectures in the polytope model. In 20th International Parallel and
Distributed Processing Symposium (IPDPS 2006), Proceedings, 25-29 April 2006,
Rhodes Island, Greece, 2006.

Anthony Danalis, George Bosilca, Aurelien Bouteiller, Thomas Herault, and Jack
Dongarra. Ptg: An abstraction for unhindered parallelism. In Proceedings of the
Fourth International Workshop on Domain-Specific Languages and High-Level
Frameworks for High Performance Computing, WOLFHPC 14, pages 21-30,
Piscataway, NJ, USA, 2014. IEEE Press.

George B. Dantzig and B. Curtis Eaves. Fourier-motzkin elimination and its
dual with application to integer programming. In B. Roy, editor, Combinatorial

Programming: Methods and Applications, pages 93—102, 1975.

BIBLIOGRAPHY 111

[29]

[30]

[32]

[33]

[34]

Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday Bondhugula.
Generating efficient data movement code for heterogeneous architectures with
distributed-memory. In Proceedings of the 22Nd International Conference on
Parallel Architectures and Compilation Techniques, PACT 13, pages 375-386,
2013.

J. Davison de St.Germain, J. McCorquodale, S.G. Parker, and C.R. Johnson.
Uintah: a massively parallel problem solving environment. In High-Performance

Distributed Computing, 2000. Proceedings. The Ninth International Symposium
on, pages 33—41, 2000.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In
Proceedings of the Theory and Practice of Software, 14th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, 2008.

Tyler Denniston, Shoaib Kamil, and Saman P. Amarasinghe. Distributed halide.
In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP 2016, Barcelona, Spain, March 12-16, 2016,
pages 5:1-5:12, 2016.

Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat
Medina, Mike Barrientos, Erich Elsen, Frank Ham, Alex Aiken, Karthik Du-
raisamy, Eric Darve, Juan Alonso, and Pat Hanrahan. Liszt: A domain specific
language for building portable mesh-based pde solvers. In Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC 11, pages 9:1-9:12, 2011.

Stefano Dissegna, Francesco Logozzo, and Francesco Ranzato. Tracing compi-
lation by abstract interpretation. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, 2014.

BIBLIOGRAPHY 112

[35]

[36]

[38]

[40]

[41]

Niklas Eén and Niklas Sorensson. An extensible sat-solver. In Theory and Appli-
cations of Satisfiability Testing, 6th International Conference, SAT 2003. Santa
Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers.

Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem,
Mike Houston, Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken,
William J. Dally, and Pat Hanrahan. Sequoia: programming the memory hierar-
chy. In Proceedings of the ACM/IEEE SC2006 Conference on High Performance
Networking and Computing, November 11-17, 2006, Tampa, FL, USA, page 83,
2006.

Paul Feautrier. Automatic parallelization in the polytope model. In The Data
Parallel Programming Model: Foundations, HPF Realization, and Scientific Ap-
plications, pages 79-103, 1996.

Charles R. Ferenbaugh. PENNANT: an unstructured mesh mini-app for ad-
vanced architecture research. Concurrency and Computation: Practice and Ez-

perience, 2014.

Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin,
Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare, Boris Zbarsky, Jason
Orendorff, Jesse Ruderman, Edwin W. Smith, Rick Reitmaier, Michael Bebenita,
Mason Chang, and Michael Franz. Trace-based just-in-time type specialization
for dynamic languages. In Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI "09, 2009.

M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

Michael A. Heroux, Douglas W. Doerfler, Paul S. Crozier, James M. Wil-
lenbring, H. Carter Edwards, Alan Williams, Mahesh Rajan, Eric R. Keiter,
Heidi K. Thornquist, and Robert W. Numrich. Improving Performance via Mini-
applications. Technical Report SAND2009-5574, Sandia National Laboratories,
2009.

BIBLIOGRAPHY 113

[42]

[43]

[44]

[45]

[46]

[47]

Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling fortran D
for MIMD distributed memory machines. Commun. ACM, 35(8):66-80, 1992.

Reazul Hoque, Thomas Herault, George Bosilca, and Jack Dongarra. Dynamic
task discovery in parsec: A data-flow task-based runtime. In Proceedings of the
S8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems,
ScalA 17, 2017.

Mike Houston, Ji Young Park, Manman Ren, Timothy J. Knight, Kayvon Fata-
halian, Alex Aiken, William J. Dally, and Pat Hanrahan. A portable runtime
interface for multi-level memory hierarchies. In Proceedings of the 15th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPOPP
2008, Salt Lake City, UT, USA, February 20-23, 2008, pages 143—-152, 2008.

Lluis Jofre, Gianluca Geraci, Hillary Fairbanks, Alireza Doostan, and Gianluca
laccarino. Multi-fidelity uncertainty quantification of irradiated particle-laden
turbulence. CTR Annual Research Briefs, pages 21-34, 11 2017.

Christopher A. Kennedy, Mark H. Carpenter, and R. Michael Lewis. Low-storage,
explicit runge-kutta schemes for the compressible navier-stokes equations. Appl.
Numer. Math., 35(3):177-219, November 2000.

Ken Kennedy, Charles Koelbel, and Hans Zima. The rise and fall of High Per-
formance Fortran: An historical object lesson. In Proceedings of the Third ACM

SIGPLAN Conference on History of Programming Languages, pages 7-1. ACM,
2007.

The OpenCL Specification, Version 1.0. The Khronos OpenCL Working Group,
December 2008.

Charles Koelbel and Piyush Mehrotra. Compiling global name-space parallel
loops for distributed execution. IEEE Trans. Parallel Distrib. Syst., 2(4):440-
451, 1991.

BIBLIOGRAPHY 114

[50]

[51]

[52]

[55]

[58]

Okwan Kwon, Fahed Jubair, Rudolf Eigenmann, and Samuel Midkiff. A hybrid
approach of OpenMP for clusters. PPoPP, pages 75-84. ACM, 2012.

Wonchan Lee, Manolis Papadakis, Elliott Slaughter, and Alex Aiken. A
constraint-based approach to automatic data partitioning for distributed memory
execution. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, SC 2019 (to appear), 2019.

Wonchan Lee, Elliott Slaughter, Michael Bauer, Sean Treichler, Todd Warsza-
wski, Michael Garland, and Alex Aiken. Dynamic tracing: Memoization of task
graphs for dynamic task-based runtimes. In Proceedings of the International Con-

ference for High Performance Computing, Networking, Storage and Analysis, SC
2018, 2018.

Omid Mashayekhi, Hang Qu, Chinmayee Shah, and Philip Levis. Execution
templates: Caching control plane decisions for strong scaling of data analytics.

In USENIX Annual Technical Conference (USENIX ATC), 2017.

Michael F Modest. Chapter 17 - the method of discrete ordinates (sn-
approximation). In Michael F Modest, editor, Radiative Heat Transfer (Third
Edition), pages 541 — 584. Academic Press, Boston, third edition edition, 2013.

Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley,
and Kayvon Fatahalian. Automatically scheduling halide image processing
pipelines. ACM Trans. Graph., 35(4):83:1-83:11, 2016.

Judit Planas, Rosa M. Badia, Eduard Ayguadé, and Jests Labarta. Hierarchical
task-based programming with starss. IJHPCA, 23(3):284-299, 2009.

Hadi Pouransari and Ali Mani. Effects of Preferential Concentration on Heat

Transfer in Particle-Based Solar Receivers. Journal of Solar Energy Engineering,
139(2), 11 2016. 021008.

William Pugh. The omega test: a fast and practical integer programming algo-
rithm for dependence analysis. In Proceedings Supercomputing ‘91, Albuquerque,
NM, USA, November 18-22, 1991, pages 4-13, 1991.

BIBLIOGRAPHY 115

[59]

[60]

[62]

[63]

[64]

[65]

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. Halide: A language and compiler for opti-
mizing parallelism, locality, and recomputation in image processing pipelines. In
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 13, pages 519-530, 2013.

Mahesh Ravishankar, Roshan Dathathri, Venmugil Elango, Louis-Noél Pouchet,
J. Ramanujam, Atanas Rountev, and P. Sadayappan. Distributed memory code

generation for mixed irregular /regular computations. PPoPP, pages 65-75. ACM,
2015.

Mahesh Ravishankar, John FEisenlohr, Louis-Noél Pouchet, J. Ramanujam,
Atanas Rountev, and P. Sadayappan. Code generation for parallel execution

of a class of irregular loops on distributed memory systems. In Supercomputing
(SC), 2012.

Manman Ren, Ji Young Park, Mike Houston, Alex Aiken, and William J. Dally.
A tuning framework for software-managed memory hierarchies. In 17th Interna-

tional Conference on Parallel Architectures and Compilation Techniques, PACT

2008, Toronto, Ontario, Canada, October 25-29, 2008, pages 280-291, 2008.

Eric Schnarr and James R. Larus. Fast out-of-order processor simulation using
memoization. In ASPLOS-VIII Proceedings of the 8th International Conference
on Architectural Support for Programming Languages and Operating Systems,
San Jose, California, USA, October 3-7, 1998., pages 283-294, 1998.

Elliott Slaughter, Wonchan Lee, Sean Treichler, Michael Bauer, and Alex Aiken.
Regent: a high-productivity programming language for HPC with logical regions.

In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC' 2015, pages 81:1-81:12, 2015.

Elliott Slaughter, Wonchan Lee, Sean Treichler, Wen Zhang, Michael Bauer,
Galen Shipman, Patrick McCormick, and Alex Aiken. Control replication: Com-

piling implicit parallelism to efficient spmd with logical regions. In Proceedings

BIBLIOGRAPHY 116

[66]

[67]

[68]

[69]

[70]

[71]

of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2017, 2017.

Lawrence Snyder. The design and development of zpl. In Proceedings of the Third
ACM SIGPLAN Conference on History of Programming Languages, HOPL III,
pages 8-1-8-37, 2007.

Michelle Mills Strout, Mary W. Hall, and Catherine Olschanowsky. The sparse
polyhedral framework: Composing compiler-generated inspector-executor code.
Proceedings of the IEEFE, 106(11):1921-1934, 2018.

Hilario Torres, Manolis Papadakis, Lluis Jofre, Wonchan Lee, Alex Aiken, and
Gianluca Taccarin. Soleil-x: Turbulence, particles, and radiation in the regent
programming language. In Proceedings of the IEEE/ACM Parallel Applications
Workshop, Alternatives To MPI, PAW-ATM 2019 (to appear), 2019.

Sean Treichler, Michael Bauer, and Alex Aiken. Realm: an event-based low-
level runtime for distributed memory architectures. In International Conference
on Parallel Architectures and Compilation, PACT 14, Edmonton, AB, Canada,
August 24-27, 2014, pages 263-276, 2014.

Sean Treichler, Michael Bauer, Ankit Bhagatwala, Giulio Borghesi, Ramanan
Sankaran, Hemanth Kolla, Patrick S McCormick, Elliott Slaughter, Wonchan
Lee, Alex Aiken, et al. S3d-legion: An exascale software for direct numerical
simulation of turbulent combustion with complex multicomponent chemistry. In
FEzascale Scientific Applications, pages 257-278. Chapman and Hall/CRC, 2017.

Sean Treichler, Michael Bauer, Rahul Sharma, Elliott Slaughter, and Alex Aiken.
Dependent partitioning. In Proceedings of the 2016 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Nether-
lands, October 30 - November 4, 2016, pages 344-358, 2016.

Rob F. Van der Wijngaart and Timothy G. Mattson. The parallel research
kernels. In HPEC, pages 1-6, 2014.

BIBLIOGRAPHY 117

(73]

[74]

[75]

[76]

Sven Verdoolaege. Isl: An integer set library for the polyhedral model. In
Proceedings of the Third International Congress Conference on Mathematical

Software, ICMS’10, 2010.

Reinhard von Hanxleden, Ken Kennedy, Charles Koelbel, Raja Das, and Joel H.
Saltz. Compiler analysis for irregular problems in fortran D. In Languages
and Compilers for Parallel Computing, 5th International Workshop, New Haven,
Connecticut, USA, August 3-5, 1992, Proceedings, pages 97-111, 1992.

Yuan Yu, Martin Abadi, Paul Barham, Eugene Brevdo, Mike Burrows, Andy
Davis, Jeff Dean, Sanjay Ghemawat, Tim Harley, Peter Hawkins, Michael Isard,
Manjunath Kudlur, Rajat Monga, Derek Gordon Murray, and Xiaoqiang Zheng.
Dynamic control flow in large-scale machine learning. In Proceedings of the Thir-
teenth FEuroSys Conference, FuroSys 2018, Porto, Portugal, April 23-26, 2018,
pages 18:1-18:15, 2018.

Xing Zhou, Jean-Pierre Giacalone, Maria Jesis Garzaran, Robert H. Kuhn, Yang
Ni, and David Padua. Hierarchical overlapped tiling. In Proceedings of the Tenth
International Symposium on Code Generation and Optimization, CGO "12, 2012.

	Abstract
	Acknowledgments
	Introduction
	Automatic Data Partitioning
	Dynamic Tracing
	Contributions
	Publications

	Programming Model
	Tasks and Regions
	Partitions
	Execution Semantics
	Dependence Analysis

	Automatic Data Partitioning
	Constraint Inference
	Constraint Solver
	Resolution
	Unification
	External Constraints
	Generalized Image and Preimage

	Optimizations
	Relaxing Disjointness Requirements
	Finding Private Sub-Partitions

	Implementation
	Optimizing Uncentered Reads
	Caching Inclusion Checks

	Evaluation
	SpMV Microbenchmark
	Stencil
	MiniAero
	Circuit
	PENNANT

	Case Study: Soleil-X

	Dynamic Tracing
	Recording Dependence Analysis
	Replaying Dependence Analysis
	Parallel Trace Replay

	Optimizations for Idempotent Recordings
	Eliding Precondition Check and Postcondition Application
	Fence Elision

	Evaluation
	Runtime Overhead
	Strong Scaling Performance
	S3D-Legion

	Related Work
	Composable and Configurable Parallelization
	Distributed Code Generation for Affine Programs
	Inspector/Executor Frameworks
	Languages with Data Parallelism
	Constraint-Based Program Analysis
	Efficient Task Graph Representations
	JIT Compilers
	Memoization for Stateful Algorithms

	Conclusion
	Bibliography

