Features in Legion Prof

Wonchan Lee
URL String

- Remembers which time period the viewer was showing
Useful to share selections of interest in timelines

The commit c40ddd should improve the memcpy performance. I tried to rerun the parallel_task tests and all the copies take less than 1ms.

http://sapling.stanford.edu/~zhihao/new_dma.11/?start=616735.1911337624&end=646395.175499537&collapseAll=false&resolution=10

BTW, for Soleil-X with particles, is it possible to map the regions to registered memory instead of local CPU memory? Registered memory has better inter-node affinity and also helps eliminating some local mem copy.

Let me know if you still observe slow copies in parallel tasks or Soleil-X.

@jiazhihao I don't think that commit improved the memcpy performance a lot. Your timeline has only two iterations that I think were simply lucky enough to avoid the issue. I re-run with the commit you mentioned...
Keyboard shortcuts

- **Ctrl-Alt -** or **1** – Zoom out (y-axis)
- **Ctrl-Alt +** or **2** – Zoom in (y-axis)
- **Ctrl -** or **3** – Zoom out (x-axis)
- **Ctrl +** or **4** – Zoom in (x-axis)
- **Ctrl 0** or **0** – Reset zoom (x-axis)

Drag-select to zoom in for a particular range

- Will show only the time span if CMD is pressed
- Can be undone with **U**
Search

Find matches on the names of tasks with regex

Keyboard shortcuts

- **S** – Start a new search
- **T** – Toggle search
- **N** – Switch to the next search
- **P** – Switch to the previous search
- **H** – Show the search history
- **C** – Clear the search history

Search query is also encoded in URL string
Dependency Tracking

- Show dependencies of each operation in the timeline

- Require both Legion Prof and Legion Spy outputs
 - Legion Spy might introduce some overhead

- Critical path analysis will be coming up shortly!
Mapper DSL

Wonchan Lee
Writing Mappers is Tedious

- Verbosity in the C++ API

- Differences between Regent and Legion
 - Region names vs. region requirements
 - Field names vs. field IDs
 - Compiler optimizations that generate non-user tasks
Writing Mappers is Tedious

- Verbosity in the C++ API

- Differences between Regent and Legion
 - Region names vs. region requirements
 - Field names vs. field IDs
 - Compiler optimizations that generate non-user tasks

- Mapper is not part of the Regent language

```cpp
local circuit_cc = root_dir .. "circuit_mapper.cc"
local circuit_so = root_dir .. "libcircuit.so"
os.execute("c++ -O2 -Wall -Werror -shared -fPIC " ..
            circuit_cc .. " -o " .. circuit_so)
terralib.linklibrary(circuit_so)
local ccircuit = terralib.includec("circuit_mapper.h")
```
Bishop: A High-level Mapper DSL

CSS-like syntax

```html
<html>
  <body>
    <p id="block1">Bigger</p>
    <p id="block2">Smaller</p>
  </body>
</html>
```

```css
p#block1 {
  font-size: 30pt;
}

p#block2 {
  font-size: 10pt;
}
```

HTML CSS
Bishop: A High-level Mapper DSL

CSS-like syntax

```plaintext
task child(r : region(...))
  ...
end

task parent(r : region(...))
  child(r)
end

task#parent {
  target-kind: x86;
}

task#child {
  target-kind: cuda;
}

task#child region#r {
  target-kind: fbmem;
}
```

Regent Bishop
Bishop: A High-level Mapper DSL

CSS-like syntax

```plaintext
task child(r : region(...))
    ...
end

task parent(r : region(...))
    child(r)
end

task#parent {
    target-kind: x86;
}

task#child {
    target-kind: cuda;
}

task#child region#r {
    target-kind: fbmem;
}
```

Regent
Bishop

Keep the separation between description and execution
Circuit Example

```python
$CPUs = processors[isa=x86]
$GPUs = processors[isa=cuda]
$HAS_GPU$ = $GPUs.size > 0

-- Mapping policies for Tasks

task {
    target : $CPUs;
}

task#calculate_new_currents[index=$i] {
    target : $HAS_GPU$ ? $GPUs[$i % $GPUs.size] : $CPUs[$i % $CPUs.size];
}

-- Mapping policies for Regions

task[isa=x86 and target=$p] region {
    target : $p.memories[kind=sysmem];
}

task[isa=cuda and target=$p] region {
    target : $p.memories[kind=fbmem];
}

task#calculate_new_currents[isa=cuda and target=$p] region#rsn {
    target : $p.memories[kind=zcmem];
}

task#calculate_new_currents[isa=cuda and target=$p] region#rgn {
    target : $p.memories[kind=zcmem];
}
```
Selectors are implemented as a distributed state machine
Plan

- Make the language feature complete
 - Copy operations
 - Layout constraints for physical instances
 - Error handling

- Static analysis to generate mappers for Regent programs

- Optimize Regent task variants based on mapping policies